Aarhus University, Department of Bioscience, Frederiksborgvej 399, 4000 Roskilde, Denmark.
Aarhus University, Department of Bioscience, Frederiksborgvej 399, 4000 Roskilde, Denmark.
Sci Total Environ. 2020 Sep 20;736:139624. doi: 10.1016/j.scitotenv.2020.139624. Epub 2020 May 23.
Worldwide, coastal and marine policies are increasingly aiming for environmental protection, and eutrophication is a global challenge, particularly impairing near-coastal marine water bodies. In this context, mussel mitigation aquaculture is currently considered an effective tool to extract nutrients from such water bodies. Mussel mitigation farming using longline systems with loops of collector material is a well-developed technology and considered promising in the western Baltic Sea. Besides several spatially limited field studies, a suitable spatial model for site-specific implementation is still lacking. In this study, we present a modular spatial model, consisting of a spatial and temporal habitat factor model (Module 1), blue mussel growth model (Module 2), mussel farm model (Module 3), and an avoidance of food limitation model (Module 4). The modules integrate data from in situ monitoring, mussel growth experiments, and eco-physiological modelling for the western Baltic Sea, to estimate spatially explicit nutrient reduction potentials. The model is flexible with respect to farm setups and harvest times and considers natural variability, model uncertainty, and required hydrodynamics. Modelling results proved valid at all scales and modules, and point out key areas for efficient mussel mitigation farms in Danish, German and Swedish areas. Modelled long-term mean mitigation potentials for harvest in November reach up to 0.88 t/ha and 0.05 t/ha for a farm setup using 2 m depth-range of the water column and 3.0 t/ha and 0.17 t/ha using up to 8 m, respectively. For Danish water bodies, we demonstrate that in efficient areas, mitigation farms (18.8 ha, 90 km collector substrate in loops with 2 m depth-range) required <3.6% of the space to extract the target nitrogen loads for good ecological status. The developed approach could prove valuable for implementing environmental policies in aquatic systems, e.g. in situ nutrient mitigation, aquaculture spatial planning, and habitat suitability mapping.
全球范围内,沿海和海洋政策越来越注重环境保护,富营养化是一个全球性挑战,尤其对近岸海洋水体造成损害。在这种背景下,贻贝减养殖目前被认为是从这些水体中提取营养物质的有效工具。使用带有集物材料环的长线系统进行贻贝减养殖是一项成熟的技术,在波罗的海西部被认为很有前景。除了一些空间有限的现场研究外,仍然缺乏适合特定地点实施的空间模型。在本研究中,我们提出了一个模块化的空间模型,由时空生境因子模型(模块 1)、贻贝生长模型(模块 2)、贻贝养殖场模型(模块 3)和避免食物限制模型(模块 4)组成。这些模块整合了来自波罗的海西部原位监测、贻贝生长实验和生态生理建模的数据,以估计空间明确的营养物质减排潜力。该模型对养殖场设置和收获时间具有灵活性,并考虑了自然变异性、模型不确定性和所需水动力。模型结果在所有尺度和模块上均被证明有效,并指出了在丹麦、德国和瑞典地区高效贻贝养殖场的关键区域。使用 2 米水深范围和 3.0 吨/公顷以及最多 8 米水深范围的养殖场设置,11 月收获时的长期平均减排潜力分别高达 0.88 吨/公顷和 0.05 吨/公顷。对于丹麦水体,我们证明在高效区域,养殖场(18.8 公顷,90 公里带有 2 米水深范围的环的集物基质)需要 <3.6%的空间来提取达到良好生态状态的目标氮负荷。所开发的方法对于在水生系统中实施环境政策可能具有重要价值,例如原位营养物质减排、水产养殖空间规划和生境适宜性制图。