Bahieldin Ahmed, Sabir Jamal S M, Ramadan Ahmed, Alzohairy Ahmed M, Younis Rania A, Shokry Ahmed M, Gadalla Nour O, Edris Sherif, Hassan Sabah M, Al-Kordy Magdy A, Kamal Khalid B H, Rabah Samar, Abuzinadah Osama A, El-Domyati Fotouh M
Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), PO Box 80141, Jeddah 21589, Saudi Arabia.
Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
Funct Plant Biol. 2013 Feb;41(1):87-95. doi: 10.1071/FP13005.
Loss-of-function and gain-of-function approaches were utilised to detect the physiological importance of glycerol biosynthesis during salt stress and the role of glycerol in conferring salt tolerance in Arabidopsis. The salt stress experiment involved wild type (WT) and transgenic Arabidopsis overexpressing the yeast GPD1 gene (analogue of Arabidopsis GLY1 gene). The experiment also involved the Arabidopsis T-DNA insertion mutants gly1 (for suppression of glycerol 3-phosphate dehydrogenase or G3PDH), gli1 (for suppression of glycerol kinase or GK), and act1 (for suppression of G3P acyltransferase or GPAT). We evaluated salt tolerance levels, in conjunction with glycerol and glycerol 3-phosphate (G3P) levels and activities of six enzymes (G3PDH, ADH (alcohol dehydrogenase), ALDH (aldehyde dehydrogenase), GK, G3PP (G3P phosphatase) and GLYDH (glycerol dehydrogenase)) involved in the glycerol pathway. The GPD1 gene was used to overexpress G3PDH, a cytosolic NAD+-dependent key enzyme of cellular glycerol biosynthesis essential for growth of cells under abiotic stresses. T2 GPD1-transgenic plants and those of the two mutants gli1 and act1 showed enhanced salt tolerance during different growth stages as compared with the WT and gly1 mutant plants. These results indicate that the participation of glycerol, rather than G3P, in salt tolerance in Arabidopsis. The results also indicate that the gradual increase in glycerol levels in T2 GPD1-transgenic, and gli1 and act1 mutant plants as NaCl level increases whereas they dropped at 200mM NaCl. However, the activities of the G3PDH, GK, G3PP and GLYDH at 150 and 200mM NaCl were not significantly different. We hypothesise that mechanism(s) of glycerol retention/efflux in the cell are affected at 200mM NaCl in Arabidopsis.
采用功能丧失和功能获得方法来检测盐胁迫期间甘油生物合成的生理重要性以及甘油在赋予拟南芥耐盐性中的作用。盐胁迫实验涉及野生型(WT)和过表达酵母GPD1基因(拟南芥GLY1基因的类似物)的转基因拟南芥。该实验还涉及拟南芥T-DNA插入突变体gly1(用于抑制甘油-3-磷酸脱氢酶或G3PDH)、gli1(用于抑制甘油激酶或GK)和act1(用于抑制G3P酰基转移酶或GPAT)。我们结合甘油和甘油-3-磷酸(G3P)水平以及参与甘油途径的六种酶(G3PDH、ADH(乙醇脱氢酶)、ALDH(醛脱氢酶)、GK、G3PP(G3P磷酸酶)和GLYDH(甘油脱氢酶))的活性评估了耐盐水平。GPD1基因用于过表达G3PDH,它是细胞甘油生物合成中一种依赖胞质NAD +的关键酶,对非生物胁迫下细胞的生长至关重要。与WT和gly1突变体植物相比,T2代GPD1转基因植物以及gli1和act1这两个突变体的植物在不同生长阶段均表现出增强的耐盐性。这些结果表明,在拟南芥耐盐性中起作用的是甘油而非G3P。结果还表明,随着NaCl水平的增加,T2代GPD1转基因植物以及gli1和act1突变体植物中的甘油水平逐渐升高,而在200mM NaCl时甘油水平下降。然而,在150和200mM NaCl条件下,G3PDH、GK、G3PP和GLYDH的活性没有显著差异。我们推测,在200mM NaCl条件下,拟南芥细胞中甘油保留/流出的机制受到了影响。