From the Department of Epidemiology, Emory University, Atlanta, GA.
Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN.
Epidemiology. 2020 Jul;31(4):509-516. doi: 10.1097/EDE.0000000000001209.
An internal validation substudy compares an imperfect measurement of a variable with a gold-standard measurement in a subset of the study population. Validation data permit calculation of a bias-adjusted estimate, which has the same expected value as the association that would have been observed had the gold-standard measurement been available for the entire study population. Existing guidance on optimal sampling for validation substudies assumes complete enrollment and follow-up of the target cohort. No guidance exists for validation substudy design while cohort data are actively being collected. In this article, we use the framework of Bayesian monitoring methods to develop an adaptive approach to validation study design. This method monitors whether sufficient validation data have been collected to meet predefined criteria for estimation of the positive and negative predictive values. We demonstrate the utility of this method using the Study of Transition, Outcomes and Gender-a cohort study of transgender and gender nonconforming people. We demonstrate the method's ability to determine efficacy (when sufficient validation data have accumulated to obtain estimates of the predictive values that fall above a threshold value) and futility (when sufficient validation data have accumulated to conclude the mismeasured variable is an untenable substitute for the gold-standard measurement). This proposed method can be applied within the context of any parent epidemiologic study design and modified to meet alternative criteria given specific study or validation study objectives. Our method provides a novel approach to effective and efficient estimation of classification parameters as validation data accrue.
一项内部验证子研究在研究人群的子集中比较了一个变量的不完美测量值与金标准测量值。验证数据允许计算偏差调整估计值,该值具有与在整个研究人群中都可获得金标准测量值时观察到的关联相同的预期值。现有的关于验证子研究最佳抽样的指南假设目标队列的完整入组和随访。当正在收集队列数据时,没有关于验证子研究设计的指南。在本文中,我们使用贝叶斯监测方法的框架来开发一种验证研究设计的自适应方法。这种方法监测是否已经收集了足够的验证数据,以满足估计阳性和阴性预测值的预定义标准。我们使用跨性别和性别不一致人群研究(Study of Transition, Outcomes and Gender)的队列研究来证明这种方法的实用性。我们展示了该方法确定疗效(当积累了足够的验证数据以获得高于阈值的预测值估计值时)和无效性(当积累了足够的验证数据以得出错误测量的变量是金标准测量值不可替代的替代物时)的能力。该方法可应用于任何母体流行病学研究设计的背景下,并根据特定的研究或验证研究目标进行修改以满足替代标准。随着验证数据的积累,我们的方法为有效和高效地估计分类参数提供了一种新方法。