Division of Computer and Information Engineering, Silla University, Pusan 46958, South Korea.
Division of Software Convergence, Cheongju University, Cheongju 28503, South Korea.
Curr Med Imaging. 2020;16(5):592-600. doi: 10.2174/1573405615666181224141358.
Low Back Pain (LBP) is a common disorder involving the muscles and bones and about half of the people experience LBP at some point of their lives. Since the social economic cost and the recurrence rate over the lifetime is very high, the treatment/rehabilitation of chronic LBP is important to physiotherapists, both for clinical and research purposes. Trunk muscles such as the lumbar multifidi is important in spinal functions and intramuscular fat is also important in understanding pain control and rehabilitations. However, the analysis of such muscles and related fat require many human interventions and thus suffers from the operator subjectivity especially when the ultrasonography is used due to its cost-effectiveness and no radioactive risk.
In this paper, we propose a fully automatic computer vision based software to compute the thickness of the lumbar multifidi muscles and to analyze intramuscular fat distribution in that area.
The proposed system applies various image processing algorithms to enhance the intensity contrast of the image and measure the thickness of the target muscle. Intermuscular fat analysis is done by Fuzzy C-Means (FCM) clustering based quantization.
In experiment using 50 DICOM format ultrasound images from 50 subjects, the proposed system shows very promising result in computing the thickness of lumbar multifidi.
The proposed system have minimal discrepancy(less than 0.2 cm) from human expert for 72% (36 out of 50 cases) of the given data. Also, FCM based intramuscular fat analysis looks better than conventional histogram analysis.
下背痛(LBP)是一种常见的骨骼肌肉疾病,约有一半的人在其一生中的某个时刻经历过 LBP。由于社会经济成本和终身复发率非常高,慢性 LBP 的治疗/康复对物理治疗师来说非常重要,无论是出于临床还是研究目的。腰椎多裂肌等躯干肌肉对于脊柱功能很重要,肌肉内脂肪对于理解疼痛控制和康复也很重要。然而,这种肌肉和相关脂肪的分析需要许多人为干预,因此容易受到操作人员主观性的影响,尤其是在使用超声检查时,因为超声检查具有成本效益和无放射性风险。
本文提出了一种基于计算机视觉的全自动软件,用于计算腰椎多裂肌的厚度,并分析该区域内的肌肉内脂肪分布。
该系统应用各种图像处理算法来增强图像的强度对比度,并测量目标肌肉的厚度。基于模糊 C 均值(FCM)聚类的量化方法进行肌间脂肪分析。
在使用 50 名受试者的 50 个 DICOM 格式超声图像的实验中,该系统在计算腰椎多裂肌的厚度方面显示出非常有前景的结果。
该系统在 72%(50 例中的 36 例)的给定数据中与人类专家的差异(小于 0.2cm)最小。此外,基于 FCM 的肌内脂肪分析优于传统的直方图分析。