Suppr超能文献

耐旱绿豆种质的形态特征:通过机器学习进行分类

Morphological traits of drought tolerant horse gram germplasm: classification through machine learning.

作者信息

Amal Thomas Cheeran, Thottathil Asif T, Veerakumari Kumarasamy P, Rakkiyappan Rajan, Vasanth Krishnan

机构信息

Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India.

Department of Statistics, Bharathiar University, Coimbatore, Tamil Nadu, India.

出版信息

J Sci Food Agric. 2020 Oct;100(13):4959-4967. doi: 10.1002/jsfa.10559. Epub 2020 Jul 3.

Abstract

BACKGROUND

Horse gram (Macrotyloma uniflorum (Lam.) Verdc.) is an underutilized pulse crop with good drought resistance traits. It is a rich source of protein. Conventional breeding methods for high yielding and abiotic stress tolerant germplasm are hampered by the scarcity of morphological data sets. Thus, horse gram cultivars considered for this study is classified based on prevailing growth factors showing homogenous genotype in various agro ecological zones. Nowadays, several machine learning (ML) methods are used in the field of plant phenotyping.

RESULTS

We adopted unsupervised learning techniques from the K-means clustering algorithm to analyze important morphological traits: plant shoot length, total plant height, flowering percentage, number of pods per plant, pod length, number of seeds per plant, and seed length variants between germplasm. Unsupervised clustering revealed that 20 germplasm accessions were grouped in four clusters in which high-yielding traits were predominantly observed in cluster 2.

CONCLUSION

These findings could guide ML-based classification to characterize suitable germplasms on the basis of high-yielding varieties for different agro-ecological zones. © 2020 Society of Chemical Industry.

摘要

背景

黑豆(Macrotyloma uniflorum (Lam.) Verdc.)是一种未得到充分利用的豆类作物,具有良好的抗旱特性。它是蛋白质的丰富来源。高产和耐非生物胁迫种质的传统育种方法因形态数据集的稀缺而受到阻碍。因此,本研究中考虑的黑豆品种是根据在不同农业生态区表现出同质基因型的主要生长因子进行分类的。如今,几种机器学习(ML)方法被应用于植物表型分析领域。

结果

我们采用K均值聚类算法中的无监督学习技术来分析重要的形态特征:植株茎长、总株高、开花率、单株荚数、荚长、单株种子数以及种质间种子长度变异。无监督聚类显示,20份种质被分为四类,其中第2类主要观察到高产性状。

结论

这些发现可为基于机器学习的分类提供指导,以便根据不同农业生态区的高产品种来鉴定合适的种质。© 2020化学工业协会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验