Suppr超能文献

卡宾蛋白 Kap114p 介导的反式阻遏控制盐胁迫下核糖体基因的表达。

Karyopherin Kap114p-mediated trans-repression controls ribosomal gene expression under saline stress.

机构信息

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.

Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan.

出版信息

EMBO Rep. 2020 Jul 3;21(7):e48324. doi: 10.15252/embr.201948324. Epub 2020 Jun 2.

Abstract

Nuclear accessibility of transcription factors controls gene expression, co-regulated by Ran-dependent nuclear localization and a competitive regulatory network. Here, we reveal that nuclear import factor-facilitated transcriptional repression attenuates ribosome biogenesis under chronic salt stress. Kap114p, one of the karyopherin-βs (Kap-βs) that mediates nuclear import of yeast TATA-binding protein (yTBP), exhibits a yTBP-binding affinity four orders of magnitude greater than its counterparts and suppresses binding of yTBP with DNA. Our crystal structure of Kap114p reveals an extensively negatively charged concave surface, accounting for high-affinity basic-protein binding. KAP114 knockout in yeast leads to a high-salt growth defect, with transcriptomic analyses revealing that Kap114p modulates expression of genes associated with ribosomal biogenesis by suppressing yTBP binding to target promoters, a trans-repression mechanism we attribute to reduced nuclear Ran levels under salinity stress. Our findings reveal that Ran integrates the nuclear transport pathway and transcription regulatory network, allowing yeast to respond to environmental stresses.

摘要

转录因子的核可及性控制基因表达,受 Ran 依赖性核定位和竞争性调控网络共同调节。在这里,我们揭示了核输入因子促进的转录抑制在慢性盐胁迫下减弱核糖体生物发生。Kap114p 是介导酵母 TATA 结合蛋白(yTBP)核输入的核孔蛋白-β(Kap-β)之一,与其他 Kap-β 相比,它表现出四数量级更高的 yTBP 结合亲和力,并抑制 yTBP 与 DNA 的结合。我们的 Kap114p 晶体结构揭示了一个广泛的带负电荷的凹面,解释了其与碱性蛋白的高亲和力结合。酵母中的 KAP114 敲除导致耐盐生长缺陷,转录组分析显示 Kap114p 通过抑制 yTBP 与靶启动子的结合来调节与核糖体生物发生相关的基因表达,这是一种反式抑制机制,我们归因于盐胁迫下核内 Ran 水平降低。我们的研究结果表明,Ran 整合了核转运途径和转录调控网络,使酵母能够对环境压力做出反应。

相似文献

1
Karyopherin Kap114p-mediated trans-repression controls ribosomal gene expression under saline stress.
EMBO Rep. 2020 Jul 3;21(7):e48324. doi: 10.15252/embr.201948324. Epub 2020 Jun 2.
4
Nuclear import of TFIIB is mediated by Kap114p, a karyopherin with multiple cargo-binding domains.
Mol Biol Cell. 2005 Jul;16(7):3200-10. doi: 10.1091/mbc.e04-11-0990. Epub 2005 May 11.
5
Modulation of histone deposition by the karyopherin kap114.
Mol Cell Biol. 2005 Mar;25(5):1764-78. doi: 10.1128/MCB.25.5.1764-1778.2005.
7
Factors affecting nuclear export of the 60S ribosomal subunit in vivo.
Mol Biol Cell. 2000 Nov;11(11):3777-89. doi: 10.1091/mbc.11.11.3777.
8
Molecular mechanisms of nuclear protein transport.
Crit Rev Eukaryot Gene Expr. 1997;7(1-2):61-72. doi: 10.1615/critreveukargeneexpr.v7.i1-2.40.
9
A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B.
EMBO J. 2002 Dec 2;21(23):6527-38. doi: 10.1093/emboj/cdf647.
10
The importin/karyopherin Kap114 mediates the nuclear import of TATA-binding protein.
Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12542-7. doi: 10.1073/pnas.96.22.12542.

引用本文的文献

1
Nap1 and Kap114 co-chaperone H2A-H2B and facilitate targeted histone release in the nucleus.
J Cell Biol. 2025 Jan 6;224(1). doi: 10.1083/jcb.202408193. Epub 2024 Nov 27.
3
Mechanism of RanGTP priming H2A-H2B release from Kap114 in an atypical RanGTP•Kap114•H2A-H2B complex.
Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2301199120. doi: 10.1073/pnas.2301199120. Epub 2023 Jul 14.
4
Molecular basis of RanGTP-activated release of Histones H2A-H2B from Importin-9.
Structure. 2023 Aug 3;31(8):903-911.e3. doi: 10.1016/j.str.2023.06.001. Epub 2023 Jun 27.
5
Co-translational binding of importins to nascent proteins.
Nat Commun. 2023 Jun 9;14(1):3418. doi: 10.1038/s41467-023-39150-9.
6
Molecular basis of RanGTP-activated nucleosome assembly with Histones H2A-H2B bound to Importin-9.
bioRxiv. 2023 Jan 28:2023.01.27.525896. doi: 10.1101/2023.01.27.525896.
8
Morphological growth dynamics, mechanical stability, and active microtubule mechanics underlying spindle self-organization.
Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2209053119. doi: 10.1073/pnas.2209053119. Epub 2022 Oct 25.

本文引用的文献

1
50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms.
Nat Struct Mol Biol. 2019 Sep;26(9):783-791. doi: 10.1038/s41594-019-0287-x. Epub 2019 Aug 22.
2
Promoter Recognition: Putting TFIID on the Spot.
Trends Cell Biol. 2019 Sep;29(9):752-763. doi: 10.1016/j.tcb.2019.06.004. Epub 2019 Jul 9.
4
Membrane Charging and Swelling upon Calcium Adsorption as Revealed by Phospholipid Nanodiscs.
J Phys Chem Lett. 2018 Aug 2;9(15):4287-4293. doi: 10.1021/acs.jpclett.8b01651. Epub 2018 Jul 17.
6
: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions.
J Appl Crystallogr. 2017 Jun 26;50(Pt 4):1212-1225. doi: 10.1107/S1600576717007786. eCollection 2017 Aug 1.
7
Improved method for soluble expression and rapid purification of yeast TFIIA.
Protein Expr Purif. 2017 May;133:50-56. doi: 10.1016/j.pep.2017.02.013. Epub 2017 Mar 1.
8
Probing the Acid-Induced Packing Structure Changes of the Molten Globule Domains of a Protein near Equilibrium Unfolding.
J Phys Chem Lett. 2017 Jan 19;8(2):470-477. doi: 10.1021/acs.jpclett.6b02722. Epub 2017 Jan 9.
9
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验