Mao Xiuhai, Liu Mengmeng, Yan Lei, Deng Mengying, Li Fan, Li Min, Wang Fei, Li Jiang, Wang Lihua, Tian Yang, Fan Chunhai, Zuo Xiaolei
Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
ACS Nano. 2020 Jul 28;14(7):8776-8783. doi: 10.1021/acsnano.0c03362. Epub 2020 Jun 5.
Active sites of proteins are generally encapsulated within three-dimensional peptide scaffolds that provide the molecular-scale confinement microenvironment. Nevertheless, the ability to tune thermodynamic stability in biomimetic molecular confinement relies on the macromolecular crowding effect of lack of stoichiometry and reconfigurability. Here, we report a framework nucleic acid (FNA)-based strategy to increase thermodynamic stability of aptamers. We demonstrate that the molecular-scale confinement increases the thermodynamic stability of aptamers facilitated folding kinetics, which is confirmed by the single-molecule FRET (smFRET). Unfavorable conformations of aptamers are restricted as revealed by the Monte Carlo simulation. The binding affinity of the DNA framework-confined aptamer is improved by ∼3-fold. With a similar strategy we improve the catalytic activity of hemin-binding aptamer. Our approach thus shows high potential for designing protein-mimicking DNA nanostructures with enhanced binding affinity and catalytic activity for biosensing and biomedical engineering.
蛋白质的活性位点通常被包裹在三维肽支架内,这些支架提供了分子尺度的受限微环境。然而,在缺乏化学计量和可重构性的情况下,在仿生分子受限环境中调节热力学稳定性的能力依赖于大分子拥挤效应。在此,我们报告了一种基于框架核酸(FNA)的策略来提高适体的热力学稳定性。我们证明,分子尺度的受限提高了适体的热力学稳定性,促进了折叠动力学,这通过单分子荧光共振能量转移(smFRET)得到证实。蒙特卡罗模拟表明,适体的不利构象受到限制。DNA框架受限适体的结合亲和力提高了约3倍。采用类似策略,我们提高了血红素结合适体的催化活性。因此,我们的方法在设计具有增强结合亲和力和催化活性的蛋白质模拟DNA纳米结构用于生物传感和生物医学工程方面显示出巨大潜力。