Mohan Amalu, Sebastian Ebin, Gudem Mahesh, Hariharan Mahesh
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala 695551, India.
J Phys Chem B. 2020 Aug 6;124(31):6867-6874. doi: 10.1021/acs.jpcb.0c03281. Epub 2020 Jun 23.
Perylenediimide (PDI) derivatives are essential organic semiconductor materials in a variety of photofunctional devices. By virtue of the large energy gap between the singlet and triplet excited states (Δ = 1.1 eV), augmentation of the triplet state population in monomeric PDI is a challenging task. We report the metal atom-free approach in engendering a near-quantitative triplet yield in perbromoperylenediimide/octabromoperylenediimide (OBPDI), absorbing in the visible region of the electromagnetic spectrum. Perbromination of PDI causes significant out-of-plane distortion (θ = 39°) in the aromatic core of OBPDI as compared to the planar PDI (θ = 0°). A substantial decrease (Δ = 0.377 V) in the reduction potential of OBPDI, (OBPDI/OBPDI) = -0.170 V, when compared to the reduction potential, (PDI/PDI) = -0.547 V, of bare PDI makes OBPDI a promising electron acceptor. As a consequence of incorporating eight bromine atoms, the fluorescence quantum yield of a bare PDI chromophore (ϕ = 97 ± 1%; τ = 4.54 ns) decreases to a very low value in OBPDI (ϕ = 3 ± 1%; τ = 13.78 ps). Femtosecond transient absorption measurements of OBPDI reveal intersystem crossing (ISC) occurring at an ultrafast time scale (τ = 14.20 ps), leading to a near-quantitative triplet population (ϕ = 97 ± 1%). Theoretical investigations performed to decode the excited state dynamics in OBPDI propose that (i) cumulative addition of eight bromine atoms enhances the magnitude of spin-orbit coupling (SOC) and (ii) twist on the perylene core moderately reduces the energy gap between the singlet-triplet states. Understanding the structural alterations that control the electronic parameters in accessing the triplet excited states of organic chromophores, like PDI, can lead to the design and fabrication of efficient optoelectronic devices and energy storage materials.
苝二酰亚胺(PDI)衍生物是多种光功能器件中不可或缺的有机半导体材料。由于单重态和三重态激发态之间的能隙较大(Δ = 1.1 eV),增加单体PDI中的三重态布居数是一项具有挑战性的任务。我们报道了一种无金属原子的方法,可在吸收电磁光谱可见光区域的全溴代苝二酰亚胺/八溴代苝二酰亚胺(OBPDI)中实现近乎定量的三重态产率。与平面的PDI(θ = 0°)相比,PDI的全溴化导致OBPDI芳香核中出现显著的面外扭曲(θ = 39°)。与裸PDI的还原电位((PDI/PDI) = -0.547 V)相比,OBPDI的还原电位大幅降低(Δ = 0.377 V),(OBPDI/OBPDI) = -0.170 V,这使得OBPDI成为一种有前景的电子受体。由于引入了八个溴原子,裸PDI发色团的荧光量子产率(ϕ = 97 ± 1%;τ = 4.54 ns)在OBPDI中降至非常低的值(ϕ = 3 ± 1%;τ = 13.78 ps)。OBPDI的飞秒瞬态吸收测量表明,系间窜越(ISC)在超快时间尺度(τ = 14.20 ps)发生,导致近乎定量的三重态布居数(ϕ = 97 ± 1%)。为解读OBPDI中的激发态动力学而进行的理论研究表明:(i)八个溴原子的累积添加增强了自旋 - 轨道耦合(SOC)的强度;(ii)苝核上的扭曲适度减小了单重态 - 三重态之间的能隙。理解控制有机发色团(如PDI)三重态激发态电子参数的结构变化,有助于设计和制造高效的光电器件和储能材料。