Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
Institute of Plant Biology, Biological Research Center, Szeged, Hungary.
Biochim Biophys Acta Bioenerg. 2020 Oct 1;1861(10):148234. doi: 10.1016/j.bbabio.2020.148234. Epub 2020 May 30.
Photosystem II (PS II) catalyzes the light-driven process of water splitting in oxygenic photosynthesis. Four core membrane-spanning proteins, including D1 that binds the majority of the redox-active co-factors, are surrounded by 13 low-molecular-weight (LMW) proteins. We previously observed that deletion of the LMW PsbT protein in the cyanobacterium Synechocystis sp. PCC 6803 slowed electron transfer between the primary and secondary plastoquinone electron acceptors Q and Q and increased the susceptibility of PS II to photodamage. Here we show that photodamaged ∆PsbT cells exhibit unimpaired rates of oxygen evolution if electron transport is supported by HCO even though the cells exhibit negligible variable fluorescence. We find that the protein environment in the vicinity of Q and Q is altered upon removal of PsbT resulting in inhibition of Q oxidation in the presence of 2,5-dimethyl-1,4-benzoquinone, an artificial PS II-specific electron acceptor. Thermoluminescence measurements revealed an increase in charge recombination between the S oxidation state of the water-oxidizing complex and Q by the indirect radiative pathway in ∆PsbT cells and this is accompanied by increased O production. At the protein level, both D1 removal and replacement, as well as PS II biogenesis, were accelerated in the ∆PsbT strain. Our results demonstrate that PsbT plays a key role in optimizing the electron acceptor complex of the acceptor side of PS II and support the view that repair and biogenesis of PS II share an assembly pathway that incorporates both de novo synthesis and recycling of the assembly modules associated with the core membrane-spanning proteins.
光系统 II(PS II)催化产氧光合作用中的水裂解光驱动过程。四个核心膜跨膜蛋白,包括结合大部分氧化还原活性辅助因子的 D1,被 13 个低分子量(LMW)蛋白包围。我们之前观察到,在蓝细菌集胞藻 PCC 6803 中缺失 LMW PsbT 蛋白会减缓初级和次级质体醌电子受体 Q 和 Q 之间的电子转移,并增加 PS II 对光损伤的敏感性。在这里,我们表明,如果电子传递得到 HCO 的支持,即使细胞表现出可忽略不计的可变荧光,光损伤的 ∆PsbT 细胞仍能表现出未受损的氧气产生速率。我们发现,在去除 PsbT 后,Q 和 Q 附近的蛋白质环境发生改变,导致在 2,5-二甲基-1,4-苯醌存在下 Q 的氧化受到抑制,2,5-二甲基-1,4-苯醌是一种人工 PS II 特异性电子受体。热致发光测量显示,在 ∆PsbT 细胞中,通过间接辐射途径,S 氧化态的水氧化复合物和 Q 之间的电荷复合增加,并且伴随着 O 产量的增加。在蛋白质水平上,D1 的去除和替换以及 PS II 的生物发生在 ∆PsbT 菌株中都得到了加速。我们的结果表明,PsbT 在优化 PS II 受体侧的电子受体复合物方面起着关键作用,并支持这样一种观点,即 PS II 的修复和生物发生共享一个组装途径,该途径包括与核心膜跨膜蛋白相关的组装模块的从头合成和再循环。