Dipartimento di Matematica, Università di Pisa, Italy.
Institut für Genetik, Universität zu Köln, Germany.
Theor Popul Biol. 2020 Aug;134:92-105. doi: 10.1016/j.tpb.2020.05.002. Epub 2020 May 30.
The Kingman coalescent process is a classical model of gene genealogies in population genetics. It generates Yule-distributed, binary ranked tree topologies - also called histories - with a finite number of n leaves, together with n-1 exponentially distributed time lengths: one for each layer of the history. Using a discrete approach, we study the lengths of the external branches of Yule distributed histories, where the length of an external branch is defined as the rank of its parent node. We study the multiplicity of external branches of given length in a random history of n leaves. A correspondence between the external branches of the ordered histories of size n and the non-peak entries of the permutations of size n-1 provides easy access to the length distributions of the first and second longest external branches in a random Yule history and coalescent tree of size n. The length of the longest external branch is also studied in dependence of root balance of a random tree. As a practical application, we compare the observed and expected number of mutations on the longest external branches in samples from natural populations.
金曼凝聚过程是群体遗传学中基因谱系的经典模型。它生成具有有限数量 n 个叶子的 Yule 分布的二叉树拓扑结构——也称为历史——以及 n-1 个指数分布的时间长度:每个历史层一个。使用离散方法,我们研究了 Yule 分布历史的外部分支的长度,其中外部分支的长度定义为其父节点的等级。我们研究了具有给定长度的随机历史中外部分支的多重性。大小为 n 的有序历史的外部分支与大小为 n-1 的排列的非峰条目之间的对应关系为随机 Yule 历史和大小为 n 的凝聚树中的第一和第二长外部分支的长度分布提供了简便的访问途径。最长外部分支的长度还取决于随机树的根平衡。作为实际应用,我们比较了自然种群样本中最长外部分支上观测到的和预期的突变数量。