Suppr超能文献

测量 Kingman 树的外部分支:一种离散方法。

Measuring the external branches of a Kingman tree: A discrete approach.

机构信息

Dipartimento di Matematica, Università di Pisa, Italy.

Institut für Genetik, Universität zu Köln, Germany.

出版信息

Theor Popul Biol. 2020 Aug;134:92-105. doi: 10.1016/j.tpb.2020.05.002. Epub 2020 May 30.

Abstract

The Kingman coalescent process is a classical model of gene genealogies in population genetics. It generates Yule-distributed, binary ranked tree topologies - also called histories - with a finite number of n leaves, together with n-1 exponentially distributed time lengths: one for each layer of the history. Using a discrete approach, we study the lengths of the external branches of Yule distributed histories, where the length of an external branch is defined as the rank of its parent node. We study the multiplicity of external branches of given length in a random history of n leaves. A correspondence between the external branches of the ordered histories of size n and the non-peak entries of the permutations of size n-1 provides easy access to the length distributions of the first and second longest external branches in a random Yule history and coalescent tree of size n. The length of the longest external branch is also studied in dependence of root balance of a random tree. As a practical application, we compare the observed and expected number of mutations on the longest external branches in samples from natural populations.

摘要

金曼凝聚过程是群体遗传学中基因谱系的经典模型。它生成具有有限数量 n 个叶子的 Yule 分布的二叉树拓扑结构——也称为历史——以及 n-1 个指数分布的时间长度:每个历史层一个。使用离散方法,我们研究了 Yule 分布历史的外部分支的长度,其中外部分支的长度定义为其父节点的等级。我们研究了具有给定长度的随机历史中外部分支的多重性。大小为 n 的有序历史的外部分支与大小为 n-1 的排列的非峰条目之间的对应关系为随机 Yule 历史和大小为 n 的凝聚树中的第一和第二长外部分支的长度分布提供了简便的访问途径。最长外部分支的长度还取决于随机树的根平衡。作为实际应用,我们比较了自然种群样本中最长外部分支上观测到的和预期的突变数量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验