Suppr超能文献

用小兆伏光子场辐照非均匀平板几何形状时的蒙特卡罗计算剂量、比释动能和注量分布。

Monte-Carlo-computed dose, kerma and fluence distributions in heterogeneous slab geometries irradiated by small megavoltage photon fields.

机构信息

Department of Radiation Oncology, Henry Ford Health System, 2799 W. Grand Boulevard, Detroit, MI 48202, United States of America. Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CT & CRS building, Anushaktinagar, Mumbai 400094, India.

出版信息

Phys Med Biol. 2020 Sep 8;65(17):175012. doi: 10.1088/1361-6560/ab98d1.

Abstract

Small-field dosimetry is central to the planning and delivery of radiotherapy to patients with cancer. Small-field dosimetry is beset by complex issues, such as loss of charged-particle equilibrium (CPE), source occlusion and electron-scattering effects in low-density tissues. The purpose of the present research is the elucidation of the fundamental physics of small fields through the computation of absorbed dose, kerma and fluence distributions in heterogeneous media using the Monte-Carlo (MC) method. Absorbed dose and kerma were computed using the DOSRZnrc MC user-code for beams with square field sizes ranging from 0.25 × 0.25 to 7 × 7 cm (for 6 MV 'full linac' geometry) and 0.25 × 0.25 to 16 × 16 cm (for 15 MV 'full linac' geometry). In the bone inhomogeneity the dose increases (vs. homogeneous water) for field sizes <1 × 1 cm at 6 MV and ⩽3 × 3 cm at 15 MV and decreases (vs. homogeneous water) for field sizes ⩾3 × 3 cm at 6 MV and ⩾5 × 5 cm at 15 MV. In the lung inhomogeneity there is negligible decrease in dose compared to in uniform water for field sizes >5 × 5 cm at 6 MV and ⩾16 × 16 cm at 15 MV, consistent with the Fano theorem. The near-unity value of the absorbed-dose to collision-kerma ratio, D/K , at the centre of the bone and lung slabs in the heterogeneous phantom demonstrates that CPE is achieved in bone for field sizes >1 × 1 cm at 6 MV and ⩾5 × 5 cm at 15 MV; CPE is achieved in lung at field sizes >5 × 5 cm at 6 MV and ⩾16 × 16 cm at 15 MV. Electron-fluence perturbation factors for the 0.25 × 0.25 cm field were 1.231 and 1.403 for bone-to-water and 0.454 and 0.333 for lung-to-water at 6 and 15 MV, respectively. For field sizes large enough for quasi-CPE, the MC-derived dose-perturbation factors, lung-to-water, [Formula: see text] were close to unity; electron-fluence perturbation factors, lung-to-water, [Formula: see text] were ∼1.0, consistent with the Fano theorem. At 15 MV in the lung inhomogeneity the magnitude and also the 'shape' of the primary electron-fluence spectrum differ significantly from that in water. Beam penumbrae relative to water are narrower in the bone inhomogeneity and broader in the lung inhomogeneity for all field sizes.

摘要

小野量剂量学是癌症患者放射治疗计划和实施的核心。小野量剂量学存在复杂的问题,例如带电粒子平衡(CPE)的丧失、源遮挡以及低密度组织中的电子散射效应。本研究的目的是通过蒙特卡罗(MC)方法计算不均匀介质中的吸收剂量、比释动能和注量分布,阐明小野量的基本物理特性。对于方形射野尺寸范围为 0.25×0.25 至 7×7cm(用于 6MV“全 LINAC”几何形状)和 0.25×0.25 至 16×16cm(用于 15MV“全 LINAC”几何形状)的光束,使用 DOSRZnrc MC 用户代码计算吸收剂量和比释动能。在骨骼非均匀性中,与同质水相比,6MV 时射野尺寸 <1×1cm 以及 15MV 时射野尺寸 ⩽3×3cm 时剂量增加,而 6MV 时射野尺寸 ⩾3×3cm 以及 15MV 时射野尺寸 ⩾5×5cm 时剂量减少。在肺非均匀性中,与均匀水相比,6MV 时射野尺寸 >5×5cm 以及 15MV 时射野尺寸 ⩾16×16cm 时剂量几乎没有减少,这与 Fano 定理一致。在不均匀体模的骨骼和肺切片中心处,吸收剂量与碰撞比释动能的比值 D/K 的接近单位值表明,在 6MV 时射野尺寸 >1×1cm 以及 15MV 时射野尺寸 ⩾5×5cm 时达到了 CPE;在 6MV 时射野尺寸 >5×5cm 以及 15MV 时射野尺寸 ⩾16×16cm 时达到了 CPE。对于 0.25×0.25cm 射野,骨-水电子注量扰动因子分别为 1.231 和 1.403,肺-水电子注量扰动因子分别为 0.454 和 0.333,分别为 6 和 15MV。对于接近准 CPE 的射野尺寸,MC 衍生的剂量扰动因子,肺-水,[公式:见正文]接近单位值;肺-水电子注量扰动因子,肺-水,[公式:见正文]约为 1.0,与 Fano 定理一致。在 15MV 的肺非均匀性中,初级电子注量谱的大小和“形状”与水中的情况有显著差异。与水相比,所有射野尺寸的骨非均匀性中的射束半影宽度较窄,肺非均匀性中的射束半影宽度较宽。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验