通过可逆加成-断裂链转移/稳定自由基聚合(RAFT/MADIX)与开环聚合相结合合成及自组装聚(乙烯基己内酰胺)-聚(ε-己内酯)嵌段共聚物
Synthesis and Self-Assembly of Poly(-Vinylcaprolactam)--Poly(ε-Caprolactone) Block Copolymers via the Combination of RAFT/MADIX and Ring-Opening Polymerizations.
作者信息
Moraes Rodolfo M, Carvalho Layde T, Alves Gizelda M, Medeiros Simone F, Bourgeat-Lami Elodie, Santos Amilton M
机构信息
Laboratory of Polymers, Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, EEL-USP, Estrada Municipal do Campinho, s/n, P.O. Box 116, Lorena, SP 12602-810, Brazil.
Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France.
出版信息
Polymers (Basel). 2020 May 30;12(6):1252. doi: 10.3390/polym12061252.
Well-defined amphiphilic, biocompatible and partially biodegradable, thermo-responsive poly(-vinylcaprolactam)--poly(ε-caprolactone) (PNVCL--PCL) block copolymers were synthesized by combining reversible addition-fragmentation chain transfer (RAFT) and ring-opening polymerizations (ROP). Poly(-vinylcaprolactam) containing xanthate and hydroxyl end groups (X-PNVCL-OH) was first synthesized by RAFT/macromolecular design by the interchange of xanthates (RAFT/MADIX) polymerization of NVCL mediated by a chain transfer agent containing a hydroxyl function. The xanthate-end group was then removed from PNVCL by a radical-induced process. Finally, the hydroxyl end-capped PNVCL homopolymer was used as a macroinitiator in the ROP of ε-caprolactone (ε-CL) to obtain PNVCL--PCL block copolymers. These (co)polymers were characterized by Size Exclusion Chromatography (SEC), Fourier-Transform Infrared FTIR), Proton Nuclear Magnetic Resonance spectroscopy (H NMR), UV-vis and Differential Scanning Calorimetry (DSC) measurements. The critical micelle concentration (CMC) of the block copolymers in aqueous solution measured by the fluorescence probe technique decreased with increasing the length of the hydrophobic block. However, dynamic light scattering (DLS) demonstrated that the size of the micelles increased with increasing the proportion of hydrophobic segments. The morphology observed by cryo-TEM demonstrated that the micelles have a pointed-oval-shape. UV-vis and DLS analyses showed that these block copolymers have a temperature-responsive behavior with a lower critical solution temperature (LCST) that could be tuned by varying the block copolymer composition.
通过结合可逆加成-断裂链转移(RAFT)聚合和开环聚合(ROP),合成了具有明确两亲性、生物相容性和部分可生物降解性的热响应性聚(N-乙烯基己内酰胺)-聚(ε-己内酯)(PNVCL-PCL)嵌段共聚物。首先通过含羟基官能团的链转移剂介导的NVCL的RAFT/大分子交换黄原酸酯设计(RAFT/MADIX)聚合,合成了含黄原酸酯和羟基端基的聚(N-乙烯基己内酰胺)(X-PNVCL-OH)。然后通过自由基诱导过程从PNVCL上去除黄原酸酯端基。最后,将羟基封端的PNVCL均聚物用作ε-己内酯(ε-CL)开环聚合的大分子引发剂,以获得PNVCL-PCL嵌段共聚物。通过尺寸排阻色谱(SEC)、傅里叶变换红外光谱(FTIR)、质子核磁共振光谱(1H NMR)、紫外可见光谱和差示扫描量热法(DSC)测量对这些(共)聚物进行了表征。通过荧光探针技术测量的嵌段共聚物在水溶液中的临界胶束浓度(CMC)随着疏水嵌段长度的增加而降低。然而,动态光散射(DLS)表明胶束的尺寸随着疏水链段比例的增加而增大。低温透射电子显微镜观察到的形态表明胶束呈尖椭圆形。紫外可见光谱和DLS分析表明,这些嵌段共聚物具有温度响应行为,其低临界溶液温度(LCST)可通过改变嵌段共聚物组成进行调节。