Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043, Italy.
Department of Neuroscience Rita Levi Montalcini, Turin 10124, Italy.
Int J Mol Sci. 2020 May 30;21(11):3928. doi: 10.3390/ijms21113928.
Mitochondria are the main fascinating energetic source into the cells. Their number, shape, and dynamism are controlled by the cell's type and current behavior. The perturbation of the mitochondrial inward system via stress response and/or oncogenic insults could activate several trafficking molecular mechanisms with the intention to solve the problem. In this review, we aimed to clarify the crucial pathways in the mitochondrial system, dissecting the different metabolic defects, with a special emphasis on hematological malignancies. We investigated the pivotal role of mitochondria in the maintenance of hematopoietic stem cells (HSCs) and their main alterations that could induce malignant transformation, culminating in the generation of leukemic stem cells (LSCs). In addition, we presented an overview of LSCs mitochondrial dysregulated mechanisms in terms of (1) increasing in oxidative phosphorylation program (OXPHOS), as a crucial process for survival and self-renewal of LSCs,(2) low levels of reactive oxygen species (ROS), and (3) aberrant expression of B-cell lymphoma 2 (Bcl-2) with sustained mitophagy. Furthermore, these peculiarities may represent attractive new "hot spots" for mitochondrial-targeted therapy. Finally, we remark the potential of the LCS metabolic effectors to be exploited as novel therapeutic targets.
线粒体是细胞内主要的能量来源。它们的数量、形状和动态性由细胞的类型和当前的行为控制。通过应激反应和/或致癌损伤对内质网系统的干扰可以激活几种运输分子机制,旨在解决问题。在这篇综述中,我们旨在阐明线粒体系统中的关键途径,剖析不同的代谢缺陷,特别强调血液系统恶性肿瘤。我们研究了线粒体在维持造血干细胞(HSCs)中的关键作用及其主要改变,这些改变可能导致恶性转化,最终产生白血病干细胞(LSCs)。此外,我们还概述了 LSCs 中线粒体失调的机制,包括:(1)增加氧化磷酸化程序(OXPHOS),这是 LSCs 存活和自我更新的关键过程;(2)低水平的活性氧(ROS);(3)B 细胞淋巴瘤 2(Bcl-2)的异常表达和持续的线粒体自噬。此外,这些特点可能代表着针对线粒体的治疗的有吸引力的新“热点”。最后,我们注意到 LCS 代谢效应物作为新的治疗靶点的潜力。