Suppr超能文献

MapGAN:一种用于网络瓦片地图的智能生成模型。

MapGAN: An Intelligent Generation Model for Network Tile Maps.

作者信息

Li Jingtao, Chen Zhanlong, Zhao Xiaozhen, Shao Lijia

机构信息

School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China.

School of Economics and Management, China University of Geosciences, Wuhan 430074, China.

出版信息

Sensors (Basel). 2020 May 31;20(11):3119. doi: 10.3390/s20113119.

Abstract

In recent years, the generative adversarial network (GAN)-based image translation model has achieved great success in image synthesis, image inpainting, image super-resolution, and other tasks. However, the images generated by these models often have problems such as insufficient details and low quality. Especially for the task of map generation, the generated electronic map cannot achieve effects comparable to industrial production in terms of accuracy and aesthetics. This paper proposes a model called Map Generative Adversarial Networks (MapGAN) for generating multitype electronic maps accurately and quickly based on both remote sensing images and render matrices. MapGAN improves the generator architecture of Pix2pixHD and adds a classifier to enhance the model, enabling it to learn the characteristics and style differences of different types of maps. Using the datasets of Google Maps, Baidu maps, and Map World maps, we compare MapGAN with some recent image translation models in the fields of one-to-one map generation and one-to-many domain map generation. The results show that the quality of the electronic maps generated by MapGAN is optimal in terms of both intuitive vision and classic evaluation indicators.

摘要

近年来,基于生成对抗网络(GAN)的图像翻译模型在图像合成、图像修复、图像超分辨率及其他任务中取得了巨大成功。然而,这些模型生成的图像往往存在细节不足和质量较低等问题。特别是对于地图生成任务,生成的电子地图在准确性和美观性方面无法达到与工业生产相当的效果。本文提出了一种名为地图生成对抗网络(MapGAN)的模型,用于基于遥感图像和渲染矩阵准确快速地生成多类型电子地图。MapGAN改进了Pix2pixHD的生成器架构,并添加了一个分类器来增强模型,使其能够学习不同类型地图的特征和风格差异。使用谷歌地图、百度地图和世界地图集的数据,我们在一对一地图生成和一对多领域地图生成领域将MapGAN与一些近期的图像翻译模型进行了比较。结果表明,MapGAN生成的电子地图在直观视觉和经典评估指标方面质量最优。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b502/7309096/9978f5e7965b/sensors-20-03119-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验