Suppr超能文献

含丙烯酸添加剂的碳纳米管薄膜电极:阻断电化学电荷转移反应

Carbon Nanotube Film Electrodes with Acrylic Additives: Blocking Electrochemical Charge Transfer Reactions.

作者信息

Ansón-Casaos Alejandro, Sanahuja-Parejo Olga, Hernández-Ferrer Javier, Benito Ana M, Maser Wolfgang K

机构信息

Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain.

出版信息

Nanomaterials (Basel). 2020 May 31;10(6):1078. doi: 10.3390/nano10061078.

Abstract

Carbon nanotubes (CNTs) processed into conductive films by liquid phase deposition technologies reveal increasing interest as electrode components in electrochemical device platforms for sensing and energy storage applications. In this work we show that the addition of acrylic latex to water-based CNT inks not only favors the fabrication of stable and robust flexible electrodes on plastic substrates but, moreover, sensitively enables the control of their electrical and electrochemical transport properties. Importantly, within a given concentration range, the acrylic additive in the films, being used as working electrodes, effectively blocks undesired faradaic transfer reactions across the electrode-electrolyte interface while maintaining their capacitance response as probed in a three-electrode electrochemical device configuration. Our results suggest a valuable strategy to enhance the chemical stability of CNT film electrodes and to suppress non-specific parasitic electrochemical reactions of relevance to electroanalytical and energy storage applications.

摘要

通过液相沉积技术加工成导电薄膜的碳纳米管(CNTs),作为用于传感和能量存储应用的电化学器件平台中的电极组件,越来越受到关注。在这项工作中,我们表明,向水基碳纳米管油墨中添加丙烯酸乳胶不仅有利于在塑料基板上制造稳定且坚固的柔性电极,而且能够灵敏地控制其电学和电化学传输特性。重要的是,在给定浓度范围内,用作工作电极的薄膜中的丙烯酸添加剂有效地阻断了电极 - 电解质界面上不期望的法拉第转移反应,同时保持了在三电极电化学器件配置中探测到的电容响应。我们的结果提出了一种有价值的策略,可增强碳纳米管薄膜电极的化学稳定性,并抑制与电分析和能量存储应用相关的非特异性寄生电化学反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2bc/7353131/43f81b7070d9/nanomaterials-10-01078-g001.jpg

相似文献

1
Carbon Nanotube Film Electrodes with Acrylic Additives: Blocking Electrochemical Charge Transfer Reactions.
Nanomaterials (Basel). 2020 May 31;10(6):1078. doi: 10.3390/nano10061078.
2
Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors.
Nanoscale Res Lett. 2020 Jul 22;15(1):151. doi: 10.1186/s11671-020-03379-w.
3
Polyolefin-derived substrate-grown carbon nanotubes as binder-free electrode for hydrogen evolution in alkaline media.
Chemosphere. 2024 Feb;349:140769. doi: 10.1016/j.chemosphere.2023.140769. Epub 2023 Nov 22.
4
A review of fabrication and applications of carbon nanotube film-based flexible electronics.
Nanoscale. 2013 Mar 7;5(5):1727-52. doi: 10.1039/c3nr33560g. Epub 2013 Feb 5.
5
Carboxymethylcellulose-polyaniline/carbon nanotube (CMC-PANI/CNT) film as flexible and highly electrochemical active electrode for supercapacitors.
Int J Biol Macromol. 2022 Oct 31;219:1135-1145. doi: 10.1016/j.ijbiomac.2022.08.141. Epub 2022 Aug 29.
7
Carbon Nanotube Paper-Based Electroanalytical Devices.
Micromachines (Basel). 2016 Apr 20;7(4):72. doi: 10.3390/mi7040072.
8
Electrochemical Thin Layers in Nanostructures for Energy Storage.
Acc Chem Res. 2016 Oct 18;49(10):2336-2346. doi: 10.1021/acs.accounts.6b00315. Epub 2016 Sep 16.
9
Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector.
Nanotechnology. 2014 Oct 31;25(43):435405. doi: 10.1088/0957-4484/25/43/435405. Epub 2014 Oct 10.

引用本文的文献

1
Carbon nanomaterials-Based Inks and Electrodes Using Chitin Nanocrystals.
ACS Sustain Chem Eng. 2024 Oct 14;12(43):15980-15990. doi: 10.1021/acssuschemeng.4c05253. eCollection 2024 Oct 28.
2
Waterborne Graphene- and Nanocellulose-Based Inks for Functional Conductive Films and 3D Structures.
Nanomaterials (Basel). 2021 May 29;11(6):1435. doi: 10.3390/nano11061435.

本文引用的文献

2
The viscosity of dilute carbon nanotube (1D) and graphene oxide (2D) nanofluids.
Phys Chem Chem Phys. 2020 May 28;22(20):11474-11484. doi: 10.1039/d0cp00468e. Epub 2020 May 11.
3
Adhesion of Single-Walled Carbon Nanotube Thin Films with Different Materials.
J Phys Chem Lett. 2020 Jan 16;11(2):504-509. doi: 10.1021/acs.jpclett.9b03552. Epub 2020 Jan 6.
4
Chemical Postdeposition Treatments To Improve the Adhesion of Carbon Nanotube Films on Plastic Substrates.
ACS Omega. 2019 Feb 6;4(2):2804-2811. doi: 10.1021/acsomega.8b03475. eCollection 2019 Feb 28.
6
Highly Conductive Water-Based Polymer/Graphene Nanocomposites for Printed Electronics.
Chemistry. 2017 Jun 16;23(34):8268-8274. doi: 10.1002/chem.201700997. Epub 2017 May 24.
7
Three-Dimensional Printing of Highly Conductive Carbon Nanotube Microarchitectures with Fluid Ink.
ACS Nano. 2016 Sep 27;10(9):8879-87. doi: 10.1021/acsnano.6b04771. Epub 2016 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验