Suppr超能文献

数字基因表达分析可能有助于甲状腺癌的诊断。

Digital gene expression analysis might aid in the diagnosis of thyroid cancer.

机构信息

Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB.

Alberta Public Laboratories, University of Alberta, Edmonton, AB.

出版信息

Curr Oncol. 2020 Apr;27(2):e93-e99. doi: 10.3747/co.27.5533. Epub 2020 May 1.

Abstract

BACKGROUND

Thyroid cancer represents approximately 90% of endocrine cancers. Difficulties in diagnosis and low inter-observer agreement are sometimes encountered, especially in the distinction between the follicular variant of papillary thyroid carcinoma (fvptc) and other follicular-patterned lesions, and can present significant challenges. In the present proof-of-concept study, we report a gene-expression assay using NanoString nCounter technology (NanoString Technologies, Seattle, WA, U.S.A.) that might aid in the differential diagnosis of thyroid neoplasms based on gene-expression signatures.

METHODS

Our cohort included 29 patients with classical papillary thyroid carcinoma (ptc), 13 patients with fvptc, 14 patients with follicular thyroid carcinoma (ftc), 14 patients with follicular adenoma (fa), and 14 patients without any abnormality. We developed a 3-step classifier that shows good correlation with the pathologic diagnosis of various thyroid neoplasms. Step 1 differentiates normal from abnormal thyroid tissue; step 2 differentiates benign from malignant lesions; and step 3 differentiates the common malignant entities ptc, ftc, and fvptc.

RESULTS

Using our 3-step classifier approach based on selected genes, we developed an algorithm that attempts to differentiate thyroid lesions with varying levels of sensitivity and specificity. Three genes-namely , and were the most informative in distinguishing normal from abnormal tissue with a sensitivity and a specificity of 100%. One gene, , was important for differentiating benign from malignant lesions with a sensitivity of 89% and a specificity of 92%. Various combinations of genes were required to classify specific thyroid neoplasms.

CONCLUSIONS

This preliminary proof-of-concept study suggests a role for nCounter technology, a digital gene expression analysis technique, as an adjunct assay for the molecular diagnosis of thyroid neoplasms.

摘要

背景

甲状腺癌约占内分泌癌的 90%。在诊断方面存在困难,观察者间的一致性也较低,尤其是在滤泡型甲状腺乳头状癌(fvptc)与其他滤泡性病变的鉴别方面,这可能会带来重大挑战。在本概念验证研究中,我们报告了一种使用 NanoString nCounter 技术(美国西雅图 NanoString Technologies)的基因表达检测方法,该方法可能有助于基于基因表达特征对甲状腺肿瘤进行鉴别诊断。

方法

我们的队列包括 29 例经典型甲状腺乳头状癌(ptc)患者、13 例滤泡型甲状腺癌(fvptc)患者、14 例滤泡状甲状腺癌(ftc)患者、14 例滤泡性腺瘤(fa)患者和 14 例无任何异常的患者。我们开发了一个 3 步分类器,与各种甲状腺肿瘤的病理诊断有较好的相关性。第 1 步区分正常和异常甲状腺组织;第 2 步区分良性和恶性病变;第 3 步区分常见的恶性实体瘤 ptc、ftc 和 fvptc。

结果

使用基于选定基因的 3 步分类器方法,我们开发了一种算法,试图区分具有不同敏感度和特异性的甲状腺病变。3 个基因——、和,在区分正常和异常组织方面具有最高的信息量,敏感度和特异性均为 100%。1 个基因、在区分良性和恶性病变方面很重要,敏感度为 89%,特异性为 92%。需要各种基因组合来对特定的甲状腺肿瘤进行分类。

结论

这项初步的概念验证研究表明,nCounter 技术作为甲状腺肿瘤分子诊断的辅助检测方法具有一定的作用,nCounter 技术是一种数字基因表达分析技术。

相似文献

5
Proteotypic Differences of Follicular-Patterned Thyroid Neoplasms.滤泡型甲状腺肿瘤的原型差异。
Front Endocrinol (Lausanne). 2022 Jul 6;13:854611. doi: 10.3389/fendo.2022.854611. eCollection 2022.
10

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验