Incitti Tania, Magli Alessandro, Jenkins Asher, Lin Karena, Yamamoto Ami, Perlingeiro Rita C R
Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA.
Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
Skelet Muscle. 2020 Jun 3;10(1):17. doi: 10.1186/s13395-020-00234-5.
Skeletal muscle function is essential for health, and it depends on the proper activity of myofibers and their innervating motor neurons. Each adult muscle is composed of different types of myofibers with distinct contractile and metabolic characteristics. The proper balance of myofiber types is disrupted in most muscle degenerative disorders, representing another factor compromising muscle function. One promising therapeutic approach for the treatment of these diseases is cell replacement based on the targeted differentiation of pluripotent stem cells (PSCs) towards the myogenic lineage. We have previously shown that transient induction of Pax3 or Pax7 in PSCs allows for the generation of skeletal myogenic progenitors endowed with myogenic regenerative potential, but whether they contribute to different fiber types remains unknown.
Here, we investigate the fiber type composition of mouse PSC-derived myofibers upon their transplantation into dystrophic and non-dystrophic mice. Our data reveal that PSC-derived myofibers express slow and oxidative myosin heavy-chain isoforms, along with developmental myosins, regardless of the recipient background. Furthermore, transplantation of the mononuclear cell fraction re-isolated from primary grafts into secondary recipients results in myofibers that maintain preferential expression of slow and oxidative myosin heavy-chain isoforms but no longer express developmental myosins, thus indicating postnatal composition.
Considering oxidative fibers are commonly spared in the context of dystrophic pathogenesis, this feature of PSC-derived myofibers could be advantageous for therapeutic applications.
骨骼肌功能对健康至关重要,它依赖于肌纤维及其支配运动神经元的正常活动。每个成年肌肉由具有不同收缩和代谢特征的不同类型肌纤维组成。在大多数肌肉退行性疾病中,肌纤维类型的适当平衡被破坏,这是损害肌肉功能的另一个因素。一种有前景的治疗这些疾病的方法是基于多能干细胞(PSC)向肌源性谱系的定向分化进行细胞替代。我们之前已经表明,在PSC中短暂诱导Pax3或Pax7可产生具有肌源性再生潜力的骨骼肌祖细胞,但它们是否能分化为不同的纤维类型仍不清楚。
在这里,我们研究了将小鼠PSC衍生的肌纤维移植到营养不良和非营养不良小鼠后其纤维类型组成。我们的数据显示,无论受体背景如何,PSC衍生的肌纤维都表达慢肌和氧化型肌球蛋白重链异构体以及发育型肌球蛋白。此外,将从原发性移植物中重新分离的单核细胞部分移植到继发性受体中,会产生维持慢肌和氧化型肌球蛋白重链异构体优先表达但不再表达发育型肌球蛋白的肌纤维,从而表明其出生后的组成。
考虑到在营养不良发病机制中氧化纤维通常未受影响,PSC衍生的肌纤维的这一特征可能对治疗应用有利。