Xu Junqing, Habib Adela, Kumar Sushant, Wu Feng, Sundararaman Ravishankar, Ping Yuan
Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180, USA.
Nat Commun. 2020 Jun 3;11(1):2780. doi: 10.1038/s41467-020-16063-5.
Designing new quantum materials with long-lived electron spin states urgently requires a general theoretical formalism and computational technique to reliably predict intrinsic spin relaxation times. We present a new, accurate and universal first-principles methodology based on Lindbladian dynamics of density matrices to calculate spin-phonon relaxation time of solids with arbitrary spin mixing and crystal symmetry. This method describes contributions of Elliott-Yafet and D'yakonov-Perel' mechanisms to spin relaxation for systems with and without inversion symmetry on an equal footing. We show that intrinsic spin and momentum relaxation times both decrease with increasing temperature; however, for the D'yakonov-Perel' mechanism, spin relaxation time varies inversely with extrinsic scattering time. We predict large anisotropy of spin lifetime in transition metal dichalcogenides. The excellent agreement with experiments for a broad range of materials underscores the predictive capability of our method for properties critical to quantum information science.
设计具有长寿命电子自旋态的新型量子材料迫切需要一种通用的理论形式和计算技术,以可靠地预测本征自旋弛豫时间。我们提出了一种基于密度矩阵的林德布拉德动力学的全新、精确且通用的第一性原理方法,用于计算具有任意自旋混合和晶体对称性的固体的自旋 - 声子弛豫时间。该方法在同等基础上描述了具有和不具有反演对称性的系统中,埃利奥特 - 亚费特机制和迪亚科诺夫 - 佩雷尔机制对自旋弛豫的贡献。我们表明,本征自旋和动量弛豫时间均随温度升高而降低;然而,对于迪亚科诺夫 - 佩雷尔机制,自旋弛豫时间与非本征散射时间成反比。我们预测过渡金属二硫属化物中自旋寿命存在很大的各向异性。与广泛材料的实验结果的出色吻合突出了我们的方法对量子信息科学关键特性的预测能力。