Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
Sci Adv. 2020 Apr 22;6(17):eaaz9691. doi: 10.1126/sciadv.aaz9691. eCollection 2020 Apr.
Activation of Fas (CD95) is observed in various neurological disorders and can lead to both apoptosis and prosurvival outputs, yet how Fas signaling operates dynamically in the hippocampus is poorly understood. The optogenetic dissection of a signaling network can yield molecular-level explanations for cellular responses or fates, including the signaling dysfunctions seen in numerous diseases. Here, we developed an optogenetically activatable Fas that works in a physiologically plausible manner. Fas activation in immature neurons of the dentate gyrus triggered mammalian target of rapamycin (mTOR) activation and subsequent brain-derived neurotrophic factor secretion. Phosphorylation of extracellular signal-regulated kinase (Erk) in neural stem cells was induced under prolonged Fas activation. Repetitive activation of this signaling network yielded proliferation of neural stem cells and a transient increase in spatial working memory in mice. Our results demonstrate a novel Fas signaling network in the dentate gyrus and illuminate its consequences for adult neurogenesis and memory enhancement.
在各种神经紊乱中都观察到 Fas(CD95)的激活,它可导致细胞凋亡和存活,但其在海马体中的动态信号传递方式尚不清楚。光遗传学可对信号网络进行剖析,从而为细胞反应或命运提供分子水平的解释,包括许多疾病中观察到的信号功能障碍。在这里,我们开发了一种光遗传学上可激活的 Fas,其工作方式在生理上是合理的。在齿状回的未成熟神经元中激活 Fas 会触发雷帕霉素靶蛋白 (mTOR) 的激活以及随后的脑源性神经营养因子的分泌。在 Fas 的持续激活下,神经干细胞中的细胞外信号调节激酶 (Erk) 磷酸化被诱导。这种信号网络的重复激活导致神经干细胞的增殖和小鼠空间工作记忆的短暂增强。我们的结果表明,在齿状回中有一个新的 Fas 信号网络,并阐明了其对成年神经发生和记忆增强的影响。