Suppr超能文献

多价离子诱导羧化纤维素纳米原纤维的折返转变及其对纳米材料性能的影响。

Multivalent ion-induced re-entrant transition of carboxylated cellulose nanofibrils and its influence on nanomaterials' properties.

作者信息

Valencia Luis, Nomena Emma M, Monti Susanna, Rosas-Arbelaez Walter, Mathew Aji P, Kumar Sugam, Velikov Krassimir P

机构信息

Division of Materials and Environmental Chemistry, Stockholm University, Frescativägen 8, 10691, Stockholm, Sweden.

出版信息

Nanoscale. 2020 Aug 7;12(29):15652-15662. doi: 10.1039/d0nr02888f. Epub 2020 Jun 4.

Abstract

In this work, we identify and characterize a new intriguing capability of carboxylated cellulose nanofibrils that could be exploited to design smart nanomaterials with tuned response properties for specific applications. Cellulose nanofibrils undergo a multivalent counter-ion induced re-entrant behavior at a specific multivalent metal salt concentration. This effect is manifested as an abrupt increase in the strength of the hydrogel that returns upon a further increment of salt concentration. We systematically study this phenomenon using dynamic light scattering, small-angle X-ray scattering, and molecular dynamics simulations based on a reactive force field. We find that the transitions in the nanofibril microstructure are mainly because of the perturbing actions of multivalent metal ions that induce conformational changes of the nanocellulosic chains and thus new packing arrangements. These new aggregation states also cause changes in the thermal and mechanical properties as well as wettability of the resulting films, upon water evaporation. Our results provide guidelines for the fabrication of cellulose-based films with variable properties by the simple addition of multivalent ions.

摘要

在这项工作中,我们识别并表征了羧化纤维素纳米原纤维的一种新的有趣特性,该特性可用于设计具有特定应用的调谐响应特性的智能纳米材料。纤维素纳米原纤维在特定的多价金属盐浓度下会发生多价抗衡离子诱导的折返行为。这种效应表现为水凝胶强度的突然增加,而在盐浓度进一步增加时又会恢复。我们使用动态光散射、小角X射线散射以及基于反应力场的分子动力学模拟系统地研究了这一现象。我们发现,纳米原纤维微观结构的转变主要是由于多价金属离子的干扰作用,这些离子会诱导纳米纤维素链的构象变化,从而形成新的堆积排列。在水蒸发后,这些新的聚集状态还会导致所得薄膜的热性能、机械性能以及润湿性发生变化。我们的结果为通过简单添加多价离子来制备具有可变特性的纤维素基薄膜提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验