IEEE Trans Neural Netw Learn Syst. 2021 May;32(5):1989-2001. doi: 10.1109/TNNLS.2020.2995648. Epub 2021 May 3.
Unsupervised domain adaptation (UDA) aims at reducing the distribution discrepancy when transferring knowledge from a labeled source domain to an unlabeled target domain. Previous UDA methods assume that the source and target domains share an identical label space, which is unrealistic in practice since the label information of the target domain is agnostic. This article focuses on a more realistic UDA scenario, i.e., partial domain adaptation (PDA), where the target label space is subsumed to the source label space. In the PDA scenario, the source outliers that are absent in the target domain may be wrongly matched to the target domain (technically named negative transfer), leading to performance degradation of UDA methods. This article proposes a novel target-domain-specific classifier learning-based domain adaptation (TSCDA) method. TSCDA presents a soft-weighed maximum mean discrepancy criterion to partially align feature distributions and alleviate negative transfer. Also, it learns a target-specific classifier for the target domain with pseudolabels and multiple auxiliary classifiers to further address the classifier shift. A module named peers-assisted learning is used to minimize the prediction difference between multiple target-specific classifiers, which makes the classifiers more discriminant for the target domain. Extensive experiments conducted on three PDA benchmark data sets show that TSCDA outperforms other state-of-the-art methods with a large margin, e.g., 4% and 5.6% averagely on Office-31 and Office-Home, respectively.
无监督领域自适应 (UDA) 的目的是在从有标签的源域转移知识到无标签的目标域时减少分布差异。之前的 UDA 方法假设源域和目标域共享一个相同的标签空间,但在实践中这是不现实的,因为目标域的标签信息是未知的。本文专注于更现实的 UDA 场景,即部分领域自适应 (PDA),其中目标标签空间包含在源标签空间中。在 PDA 场景中,目标域中不存在的源域异常值可能会错误地与目标域匹配(从技术上讲称为负迁移),从而导致 UDA 方法的性能下降。本文提出了一种新的基于目标域特定分类器学习的域自适应 (TSCDA) 方法。TSCDA 提出了一种软加权最大均值差异准则来部分对齐特征分布并减轻负迁移。此外,它使用伪标签和多个辅助分类器为目标域学习特定于目标的分类器,以进一步解决分类器偏移问题。一个名为同伴辅助学习的模块用于最小化多个目标特定分类器之间的预测差异,这使得分类器对目标域更具判别力。在三个 PDA 基准数据集上进行的广泛实验表明,TSCDA 明显优于其他最先进的方法,例如在 Office-31 和 Office-Home 上分别平均提高了 4%和 5.6%。