Hosseini Semnani Samaneh, de Ruiter Anton H J, Liu Hugh H T
IEEE Trans Cybern. 2022 Jan;52(1):654-665. doi: 10.1109/TCYB.2020.2994122. Epub 2022 Jan 11.
This article presents a distributed, efficient, scalable, and real-time motion planning algorithm for a large group of agents moving in 2-D or 3-D spaces. This algorithm enables autonomous agents to generate individual trajectories independently with only the relative position information of neighboring agents. Each agent applies a force-based control that contains two main terms: 1) collision avoidance and 2) navigational feedback. The first term keeps two agents separate with a certain distance, while the second term attracts each agent toward its goal location. Compared with existing collision-avoidance algorithms, the proposed force-based motion planning (FMP) algorithm can find collision-free motions with lower transition time, free from velocity state information of neighboring agents. It leads to less computational overhead. The performance of proposed FMP is examined over several dense and complex 2-D and 3-D benchmark simulation scenarios, with results outperforming existing methods.
本文提出了一种适用于在二维或三维空间中移动的大量智能体的分布式、高效、可扩展且实时的运动规划算法。该算法使自主智能体仅利用相邻智能体的相对位置信息就能独立生成各自的轨迹。每个智能体应用一种基于力的控制,该控制包含两个主要项:1)碰撞避免和2)导航反馈。第一项使两个智能体保持一定距离分开,而第二项将每个智能体吸引向其目标位置。与现有的碰撞避免算法相比,所提出的基于力的运动规划(FMP)算法能够以更短的过渡时间找到无碰撞运动,无需相邻智能体的速度状态信息。它导致的计算开销更小。在所提出的FMP的性能在几个密集且复杂的二维和三维基准模拟场景中进行了检验,结果优于现有方法。