Reilley David J, Fuller Jack T, Nechay Michael R, Victor Marie, Li Wei, Ruberry Josiah D, Mujika Jon I, Lopez Xabier, Alexandrova Anastassia N
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California.
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; Institut Lumire Matire, Villeurbanne, France.
Biophys J. 2020 Jun 16;118(12):2979-2988. doi: 10.1016/j.bpj.2020.05.006. Epub 2020 May 20.
An atomistic understanding of metal transport in the human body is critical to anticipate the side effects of metal-based therapeutics and holds promise for new drugs and drug delivery designs. Human serum transferrin (hTF) is a central part of the transport processes because of its ubiquitous ferrying of physiological Fe(III) and other transition metals to tightly controlled parts of the body. There is an atomistic mechanism for the uptake process with Fe(III), but not for the release process, or for other metals. This study provides initial insight into these processes for a range of transition metals-Ti(IV), Co(III), Fe(III), Ga(III), Cr(III), Fe(II), Zn(II)-through fully atomistic, extensive quantum mechanical/discrete molecular dynamics sampling and provides, to our knowledge, a new technique we developed to calculate relative binding affinities between metal cations and the protein. It identifies protonation of Tyr188 as a trigger for metal release rather than protonation of Lys206 or Lys296. The study identifies the difficulty of metal release from hTF as potentially related to cytotoxicity. Simulations identify a few critical interactions that stabilize the metal binding site in a flexible, nuanced manner.
对人体中金属转运的原子层面理解对于预测金属基治疗药物的副作用至关重要,并且有望用于新药研发和药物递送设计。人血清转铁蛋白(hTF)是转运过程的核心部分,因为它能将生理状态的Fe(III)和其他过渡金属广泛地运送到身体中严格控制的部位。对于Fe(III)的摄取过程存在原子层面的机制,但对于释放过程或其他金属则不存在。本研究通过全原子、广泛的量子力学/离散分子动力学采样,对一系列过渡金属——Ti(IV)、Co(III)、Fe(III)、Ga(III)、Cr(III)、Fe(II)、Zn(II)——的这些过程提供了初步见解,并据我们所知,提供了一种我们开发的用于计算金属阳离子与蛋白质之间相对结合亲和力的新技术。它确定了Tyr188的质子化是金属释放的触发因素,而非Lys206或Lys296的质子化。该研究确定了hTF中金属释放的困难可能与细胞毒性有关。模拟确定了一些以灵活、细微的方式稳定金属结合位点的关键相互作用。