Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 73 Avenue Mounier, B1.73.10, 1200, Bruxelles, Belgium.
Namur Medicine & Drug Innovation Center (NAMEDIC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
Eur J Med Chem. 2020 Aug 15;200:112444. doi: 10.1016/j.ejmech.2020.112444. Epub 2020 May 18.
d-Alanyl-d-alanine ligase (Ddl) is a validated and attractive target among the bacterial enzymes involved in peptidoglycan biosynthesis. In the present work, we investigated the pharmacomodulations of the benzoylthiosemicarbazide scaffold to identify new Ddl inhibitors with antibacterial potency. Five novel series of thiosemicarbazide analogues, 1,2,4-thiotriazole-3-thiones, 1,3,4-thiadiazoles, phenylthiosemicarbazones, diacylthiosemicarbazides and thioureas were synthesized via straightforward procedures, then tested against Ddl and on susceptible or resistant bacterial strains. Among these, the thiosemicarbazone and thiotriazole were identified as the most promising scaffolds with Ddl inhibition potency in the micromolar range. Antimicrobial evaluation of salicylaldehyde-4(N)-(3,4-dichlorophenyl) thiosemicarbazone 33, one of the best compounds in our study, revealed interesting antimicrobial activities with values of 3.12-6.25 μM (1.06-2.12 μg/mL) against VRE strains and 12.5-25.0 μM (4.25-8.50 μg/mL) towards MRSA and VRSA strains. A detailed mechanistic study was conducted on the Ddl inhibitors 4-(3,4-dichlorophenyl)-5-(2-hydroxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 20 and compound 33, and revealed a bactericidal effect at 5 × MIC concentration after 7 h and 24 h, respectively, and a bacteriostatic effect at 1 × MIC or 2 × MIC without any sign of bacterial membrane disruption at these lower concentrations. Finally, 20 and 33 were proved to target Ddl in bacterio via intracellular LC-MS dosage of d-Ala, l-Ala and d-Ala-d-Ala. Although, at this stage, our results indicate that other mechanisms might be involved to explain the antimicrobial potency of our compounds, their ability to inhibit the growth of strains resistant to usual antibiotics, as well as strains that express alternative ligases, sets the stage for the development of new antimicrobial agents potentially less sensitive to resistance mechanisms.
D-丙氨酰-D-丙氨酸连接酶(Ddl)是参与肽聚糖生物合成的细菌酶中经过验证的有吸引力的靶标。在本工作中,我们研究了苯甲酰基硫代半卡巴腙支架的药理修饰,以鉴定具有抗菌效力的新型 Ddl 抑制剂。通过简单的程序合成了五个新系列的硫代半卡巴腙类似物,1,2,4-噻二唑-3-硫酮,1,3,4-噻二唑,苯甲酰基硫代腙,二酰基硫代半卡巴腙和硫脲,然后对 Ddl 和敏感或耐药的细菌菌株进行了测试。在这些化合物中,硫代腙和噻二唑被确定为最有前途的支架,具有在微摩尔范围内抑制 Ddl 的能力。在所研究的化合物中,水杨醛-4(N)-(3,4-二氯苯基)硫代腙 33 的抗菌评估显示出有趣的抗菌活性,对 VRE 菌株的活性值为 3.12-6.25μM(1.06-2.12μg/mL),对 MRSA 和 VRSA 菌株的活性值为 12.5-25.0μM(4.25-8.50μg/mL)。对 Ddl 抑制剂 4-(3,4-二氯苯基)-5-(2-羟基苯基)-2,4-二氢-3H-1,2,4-三唑-3-硫酮 20 和化合物 33 进行了详细的机制研究,分别在 5×MIC 浓度下作用 7 小时和 24 小时后显示出杀菌作用,在 1×MIC 或 2×MIC 浓度下没有细菌膜破裂的迹象时表现出抑菌作用。最后,通过细胞内 LC-MS 定量检测 d-Ala、l-Ala 和 d-Ala-d-Ala,证明 20 和 33 是通过靶标 Ddl 来抑制细菌生长的。尽管在现阶段,我们的结果表明,其他机制可能参与了解释我们化合物的抗菌效力,但它们抑制通常对抗生素具有耐药性的菌株以及表达替代连接酶的菌株生长的能力,为开发新的抗菌药物奠定了基础,这些新的抗菌药物可能对耐药机制的敏感性较低。