Suppr超能文献

超声辅助湿磨法合成纳米纤维笼状 LiFePO/C。

Ultrasound assisted wet media milling synthesis of nanofiber-cage LiFePO/C.

机构信息

Department of Chemical Engineering, Polytechnique Montréal, Québec, Canada.

Department of Chemistry, University of Montreal, Canada.

出版信息

Ultrason Sonochem. 2020 Nov;68:105177. doi: 10.1016/j.ultsonch.2020.105177. Epub 2020 May 27.

Abstract

To meet the objectives of the Intergovernmental Panel on Climate Change nations are adopting policies to encourage consumers to purchase electric vehicles. Electrification of the automobile industry reduces greenhouse gases but active metals for the cathode-LiCoO and LiNiO-are toxic and represent an environmental challenge at the end of their lifetime. LiFePO (LFP) is an attractive alternative that is non-toxic, thermally stable, and durable but with a moderate theoretical capacity and a low electrical conductivity. Commercial technologies to synthesize LFP are energy-intensive, produce waste that incurs cost, and involve multiple process steps. Here we synthesize LFP precursor with lignin and cellulose in a sonicated grinding chamber of a wet media mill. This approach represents a paradigm shift that introduces mechanochemistry as a motive force to react iron oxalate and lithium hydrogen phosphate at ambient temperature. Ultrasound-assisted wet media milling increases carbon dispersion and reduces the particle size simultaneously. The ultrasound is generated by a 20 kHz,500 W automatic tuning ultrasound probe. The maximum discharge rate of the LFP synthesized this way was achieved with cellulose as a carbon source, after 9 h milling, at 70% ultrasound amplitude. After 2.5 h of milling, the particle size remained constant but the crystal size continued to drop and reached 29 nm. Glucose created plate-like particles, and cellulose and lignin produced spindle-shaped particles. Long mill times and high ultrasound amplitude generate smoother particle surfaces and the powder densifies after a spray drying step.

摘要

为了实现政府间气候变化专门委员会的目标,各国正在采取政策鼓励消费者购买电动汽车。汽车工业的电气化减少了温室气体,但阴极-LiCoO 和 LiNiO 的活性金属是有毒的,并且在其使用寿命结束时对环境构成挑战。LiFePO(LFP)是一种有吸引力的替代品,它是无毒的、热稳定的和耐用的,但理论容量适中,电导率低。用于合成 LFP 的商业技术是能源密集型的,产生废物并带来成本,并且涉及多个工艺步骤。在这里,我们在湿介质磨机的超声研磨室中用木质素和纤维素合成 LFP 前体。这种方法代表了一种范式转变,它将机械化学作为一种驱动力来在环境温度下反应草酸亚铁和磷酸二氢锂。超声辅助湿介质研磨同时增加了碳的分散度并减小了颗粒尺寸。超声波由 20 kHz、500 W 自动调谐超声波探头产生。用纤维素作为碳源,经过 9 小时的研磨,在 70%的超声幅度下,以这种方式合成的 LFP 的最大放电率达到最大值。研磨 2.5 小时后,颗粒尺寸保持不变,但晶体尺寸继续下降,达到 29nm。葡萄糖形成了板状颗粒,而纤维素和木质素则产生了纺锤形颗粒。长时间的研磨和高超声幅度会产生更光滑的颗粒表面,并且在喷雾干燥步骤后粉末会致密化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验