Institute for Cybernetics, Campus de Tafira, Las Palmas de Gran Canaria, University of Las Palmas de Gran Canaria, 35017 Las Palmas, Spain.
Sensors (Basel). 2020 Jun 2;20(11):3157. doi: 10.3390/s20113157.
This paper expands upon a previous publication and is the natural continuation of an earlier study which presented an industrial validator of expiration codes printed on aluminium or tin cans, called MONICOD. MONICOD is distinguished by its high operating speed, running at 200 frames per second and validating up to 35 cans per second. This paper adds further detail to this description by describing the final stage of the MONICOD industrial validator: the process of effectively validating the characters. In this process we compare the acquired shapes, segmented during the prior stages, with expected character shapes. To do this, we use a template matching scheme (here called "morphologies") based on bitwise operations. Two learning algorithms for building the valid morphology databases are also presented. The results of the study presented here show that in the acquisition of 9885 frames containing 465 cans to be validated, there was only one false positive (0.21% of the total). Another notable feature is that it is at least 20% faster in validation time with error rates similar to those of classifiers such as support vector machines (SVM), radial base functions (RBF), multi-layer perceptron with backpropagation (MLP) and -nearest neighbours (KNN).
本文扩展了之前的出版物,是早期研究的自然延续,该早期研究提出了一种用于验证铝罐或锡罐上打印的过期代码的工业验证器,称为 MONICOD。MONICOD 的特点是操作速度高,每秒运行 200 帧,每秒最多可验证 35 个罐头。本文通过描述 MONICOD 工业验证器的最后阶段:有效验证字符的过程,为该描述添加了更多细节。在这个过程中,我们将在前几个阶段分段获取的形状与预期的字符形状进行比较。为此,我们使用基于位运算的模板匹配方案(此处称为“形态”)。还提出了两种用于构建有效形态数据库的学习算法。这里介绍的研究结果表明,在采集包含要验证的 465 个罐头的 9885 个帧时,只有一个误报(占总数的 0.21%)。另一个值得注意的特点是,它在验证时间上至少快 20%,并且错误率与支持向量机 (SVM)、径向基函数 (RBF)、带反向传播的多层感知机 (MLP) 和 K-最近邻 (KNN) 等分类器相似。