Ahmad Waqar, Shabbiri Khadija, Ahmad Ishtiaq
School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia.
Department of Chemistry, GC University, Lahore, 54000, Pakistan.
Biochem Biophys Res Commun. 2020 Jul 30;528(3):466-472. doi: 10.1016/j.bbrc.2020.05.176. Epub 2020 Jun 2.
Tau protein regulates, maintains and stabilizes microtubule assembly under normal physiological conditions. In certain pathological circumstances, tau is post-translationally modified predominantly via phosphorylation and glycosylation. Hyper-phosphorylation of tau in Alzheimer's disease (AD) resulted in aggregated neurofibrillary tangles (NFTs) formation. Unfortunately, absence of tau 3D structure makes difficult to understand exact mechanism involved in tau pathology. Here by using ab-initio modelling, we predicted a tau 3D structure that not only explains its binding with microtubules but also elucidates NFTs formation. O-linked β-N-acetylglucosaminylation (O-β-GlcNAc) is thought to regulate tau phosphorylation on single or proximal Ser/Thr residues (called as Yin-Yang sites). In this study, we not only validate the previously described three-serine residues (208, 238 and 400) as Yin-Yang sites but also predicted 22 more possible Ser/Thr O-glycosylation sites. Among them seventeen residues were predicted as possible Yin-Yang sites and are proposed to mediate NFT formation in AD. These predicted Yin-Yang sites may act as attractive therapeutic targets for the drug development in AD. Predicted 3D structure of tau was highly accessible for phosphorylation and hyperphosphorylation, and showed higher surface accessibility for interplay between O-β-GlcNAc and phosphorylation modifications. Kinases and phosphatases involved in tau phosphorylation are conserved in human and other organisms. Homology modelling revealed conserved catalytic domain for both human and C. elegans O-GlcNAc transferase (OGT), suggesting that transgenic C. elegans expressing human tau may be a suitable model system to study these modifications.
在正常生理条件下,tau蛋白调节、维持并稳定微管组装。在某些病理情况下,tau蛋白主要通过磷酸化和糖基化进行翻译后修饰。阿尔茨海默病(AD)中tau蛋白的过度磷酸化导致了神经原纤维缠结(NFTs)的形成。遗憾的是,由于缺乏tau蛋白的三维结构,难以理解tau蛋白病理学的确切机制。在此,我们通过从头建模预测了tau蛋白的三维结构,该结构不仅解释了其与微管的结合,还阐明了NFTs的形成。O-连接的β-N-乙酰葡糖胺化(O-β-GlcNAc)被认为可调节单个或近端丝氨酸/苏氨酸残基(称为阴阳位点)上的tau蛋白磷酸化。在本研究中,我们不仅验证了先前描述的三个丝氨酸残基(208、238和400)为阴阳位点,还预测了另外22个可能的丝氨酸/苏氨酸O-糖基化位点。其中17个残基被预测为可能的阴阳位点,并被认为在AD中介导NFTs的形成。这些预测的阴阳位点可能成为AD药物开发的有吸引力的治疗靶点。预测的tau蛋白三维结构对磷酸化和过度磷酸化具有高度可及性,并显示出O-β-GlcNAc与磷酸化修饰之间相互作用的更高表面可及性。参与tau蛋白磷酸化过程的激酶和磷酸酶在人类和其他生物体中是保守的。同源建模揭示了人类和秀丽隐杆线虫O-连接N-乙酰葡糖胺转移酶(OGT)的保守催化结构域,这表明表达人类tau蛋白的转基因秀丽隐杆线虫可能是研究这些修饰的合适模型系统。