Suppr超能文献

优化用于更简单语言任务的语言偏侧化的脑磁图成像估计

Optimizing Magnetoencephalographic Imaging Estimation of Language Lateralization for Simpler Language Tasks.

作者信息

Hinkley Leighton B N, De Witte Elke, Cahill-Thompson Megan, Mizuiri Danielle, Garrett Coleman, Honma Susanne, Findlay Anne, Gorno-Tempini Maria Luisa, Tarapore Phiroz, Kirsch Heidi E, Mariën Peter, Houde John F, Berger Mitchel, Nagarajan Srikantan S

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.

Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.

出版信息

Front Hum Neurosci. 2020 May 15;14:105. doi: 10.3389/fnhum.2020.00105. eCollection 2020.

Abstract

Magnetoencephalographic imaging (MEGI) offers a non-invasive alternative for defining preoperative language lateralization in neurosurgery patients. MEGI indeed can be used for accurate estimation of language lateralization with a complex language task - auditory verb generation. However, since language function may vary considerably in patients with focal lesions, it is important to optimize MEGI for estimation of language function with other simpler language tasks. The goal of this study was to optimize MEGI laterality analyses for two such simpler language tasks that can have compliance from those with impaired language function: a non-word repetition (NWR) task and a picture naming (PN) task. Language lateralization results for these two tasks were compared to the verb-generation (VG) task. MEGI reconstruction parameters (regions and time windows) for NWR and PN were first defined in a presurgical training cohort by benchmarking these against laterality indices for VG. Optimized time windows and regions of interest (ROIs) for NWR and PN were determined by examining oscillations in the beta band (12-30 Hz) a marker of neural activity known to be concordant with the VG laterality index (LI). For NWR, additional ROIs include areas MTG/ITG and for both NWR and PN, the postcentral gyrus was included in analyses. Optimal time windows for NWR were defined as 650-850 ms (stimulus-locked) and -350 to -150 ms (response-locked) and for PN -450 to -250 ms (response-locked). To verify the optimal parameters defined in our training cohort for NWR and PN, we examined an independent validation cohort ( = 30 for NWR, = 28 for PN) and found high concordance between VG laterality and PN laterality (82%) and between VG laterality and NWR laterality (87%). Finally, in a test cohort ( = 8) that underwent both the intracarotid amobarbital procedure (IAP) test and MEG for VG, NWR, and PN, we identified excellent concordance (100%) with IAP for VG + NWR + PN composite LI, high concordance for PN alone (87.5%), and moderate concordance for NWR alone (66.7%). These findings provide task options for non-invasive language mapping with MEGI that can be calibrated for language abilities of individual patients. Results also demonstrate that more accurate estimates can be obtained by combining laterality estimates obtained from multiple tasks. MEGI.

摘要

脑磁图成像(MEGI)为确定神经外科手术患者术前语言功能区提供了一种非侵入性的替代方法。实际上,MEGI可用于通过复杂的语言任务——听觉动词生成来准确估计语言功能区。然而,由于局灶性病变患者的语言功能可能有很大差异,因此优化MEGI以通过其他更简单的语言任务来估计语言功能非常重要。本研究的目的是优化MEGI对两种更简单语言任务的功能区分析,这两种任务能够让语言功能受损的患者配合完成:非词重复(NWR)任务和图片命名(PN)任务。将这两项任务的语言功能区结果与动词生成(VG)任务的结果进行比较。NWR和PN的MEGI重建参数(区域和时间窗)首先在术前训练队列中通过将其与VG的功能区指数进行对比来确定。通过检查β波段(12 - 30Hz)的振荡来确定NWR和PN的优化时间窗和感兴趣区域(ROI),β波段振荡是一种已知与VG功能区指数(LI)一致的神经活动标记。对于NWR,额外的ROI包括颞中回/颞下回区域,对于NWR和PN,中央后回均纳入分析。NWR的最佳时间窗定义为650 - 850毫秒(刺激锁定)和 - 350至 - 150毫秒(反应锁定),PN的最佳时间窗为 - 450至 - 250毫秒(反应锁定)。为了验证我们在训练队列中为NWR和PN定义的最佳参数,我们检查了一个独立的验证队列(NWR为30例,PN为28例),发现VG功能区与PN功能区之间的一致性较高(82%),VG功能区与NWR功能区之间的一致性也较高(87%)。最后,在一个接受了颈内动脉阿米妥试验(IAP)以及针对VG、NWR和PN的MEGI检查的测试队列(8例)中,我们发现VG + NWR + PN复合LI与IAP的一致性极佳(100%),单独PN的一致性较高(87.5%),单独NWR的一致性中等(66.7%)。这些发现为使用MEGI进行非侵入性语言映射提供了任务选项,可根据个体患者的语言能力进行校准。结果还表明,通过结合从多个任务获得的功能区估计可以获得更准确的估计。MEGI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3520/7242765/bc9a1d58f823/fnhum-14-00105-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验