Bailey Damian M, Lanéelle Damien, Trihan Jean-Eudes, Marchi Nicola, Stacey Benjamin S, Tamiya Kazuki, Washio Takuro, Tuaillon Edouard, Hirtz Christophe, Lehmann Sylvain, Ogoh Shigehiko, Normand Hervé
Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK.
Service de Médecine Vasculaire, Centre Hospitalo-Universitaire, Caen, France; UNICAEN, INSERM, COMETE, GIP CYCERON, Normandie University, Caen, France.
Neuroscience. 2020 Aug 10;441:142-160. doi: 10.1016/j.neuroscience.2020.05.048. Epub 2020 Jun 2.
The present study examined if repeated bouts of micro- and hypergravity during parabolic flight (PF) alter structural integrity of the neurovascular unit (NVU) subsequent to free radical-mediated changes in regional cerebral perfusion. Six participants (5♂, 1♀) aged 29 ± 11 years were examined before, during and after a 3 h PF and compared to six sex and age-matched (27 ± 6 years) normogravity controls. Blood flow was measured in the anterior (middle cerebral artery, MCA; internal carotid artery, ICA) and posterior (vertebral artery, VA) circulation (duplex ultrasound) in-flight over the course of 15 parabolas. Venous blood was assayed for free radicals (electron paramagnetic resonance spectroscopy), nitric oxide (NO, ozone-based chemiluminescence) and NVU integrity (chemiluminescence/ELISA) in normogravity before and after exposure to 31 parabolas. While MCA velocity did not change (P > 0.05), a selective increase in VA flow was observed during the most marked gravitational transition from micro- to hypergravity (P < 0.05). Increased oxidative-nitrosative stress defined by a free radical-mediated reduction in NO and elevations in glio-vascular GFAP and S100ß were observed after PF (P < 0.05), the latter proportional to the increase in VA flow (r = 0.908, P < 0.05). In contrast, biomarkers of neuronal-axonal damage (neuron-specific enolase, neurofilament light-chain, ubiquitin carboxy-terminal hydrolase L1 and tau) did not change (P > 0.05). Collectively, these findings suggest that the cumulative effects of repeated gravitational transitions may promote minor blood-brain barrier disruption, potentially related to the combined effects of haemodynamic (posterior cerebral hyperperfusion) and molecular (systemic oxidative-nitrosative) stress.
本研究探讨了抛物线飞行(PF)期间反复出现的微重力和超重状态是否会在自由基介导的局部脑灌注变化之后改变神经血管单元(NVU)的结构完整性。对6名年龄在29±11岁的参与者(5名男性,1名女性)在3小时PF飞行前、飞行期间和飞行后进行了检查,并与6名年龄和性别匹配(27±6岁)的正常重力对照组进行了比较。在15次抛物线飞行过程中,通过双功超声测量飞行中前循环(大脑中动脉,MCA;颈内动脉,ICA)和后循环(椎动脉,VA)的血流。在暴露于31次抛物线飞行前后的正常重力状态下,对静脉血进行自由基(电子顺磁共振波谱)、一氧化氮(NO,基于臭氧的化学发光法)和NVU完整性(化学发光/酶联免疫吸附测定)检测。虽然MCA流速没有变化(P>0.05),但在从微重力到超重的最显著重力转变期间,观察到VA血流有选择性增加(P<0.05)。PF飞行后观察到氧化亚硝化应激增加,表现为自由基介导的NO减少以及神经胶质血管GFAP和S100β升高(P<0.05),后者与VA血流增加成正比(r=0.908,P<0.05)。相比之下,神经元轴突损伤的生物标志物(神经元特异性烯醇化酶、神经丝轻链、泛素羧基末端水解酶L1和tau)没有变化(P>0.05)。总体而言,这些发现表明,反复重力转变的累积效应可能会促进轻微的血脑屏障破坏,这可能与血流动力学(大脑后循环过度灌注)和分子(全身氧化亚硝化)应激的综合作用有关。