Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
Comp Biochem Physiol C Toxicol Pharmacol. 2020 Oct;236:108816. doi: 10.1016/j.cbpc.2020.108816. Epub 2020 Jun 3.
The role of metal speciation on metal bioavailability, bio-reactivity and toxicity at the fish intestine is poorly understood. To investigate these processes, we used an in vitro model of the rainbow trout (Oncorhynchus mykiss) intestine, the RTgutGC cell line. Cells were exposed to two essential metals (copper and zinc) and two non-essential metals (cadmium and silver) in a medium of well-defined composition, which allowed the determination of metal speciation in solution. Concentrations resulting in a 50% cell viability reduction (EC) were measured using a viability assay based on two endpoints: metabolic activity and membrane integrity. Metal bioavailability and bio-reactivity was studied at non-toxic (300 nM all metals) and toxic (EC; Ag-0.6, Cu-0.9, Cd-3, and Zn-9 μM) concentrations. Bioavailability (i.e. intracellular metal accumulation) was determined by ICP-MS, while bio-reactivity (i.e. induction of a metal specific transcriptional response) was determined by measuring the mRNA levels of a known biomarker of metal exposure (i.e. metallothionein) and of copper and zinc transporters (i.e. ATP7A and ZnT1). Dominant metal species in the exposure medium were Zn, CuHPO, CdCl, and AgCl respectively for Zn, Cu, Cd, and Ag. The EC showed the metal toxicity hierarchy: Ag > Cu > Cd > Zn. In RTgutGC cells, essential metal homeostasis was tightly regulated while non-essential metals accumulated more readily. Non-essential metals were also more bio-reactive inducing higher MT and ZnT1 mRNA levels. Taken together these findings indicate that metal toxicity in RTgutGC cannot solely be explained by extracellular metal speciation but requires the evaluation of metal bioavailability and bio-reactivity.
金属形态对鱼类肠道中金属生物利用度、生物反应性和毒性的影响知之甚少。为了研究这些过程,我们使用了一种虹鳟鱼(Oncorhynchus mykiss)肠道的体外模型,即 RTgutGC 细胞系。细胞在组成明确的培养基中暴露于两种必需金属(铜和锌)和两种非必需金属(镉和银),从而可以确定溶液中的金属形态。使用基于两种终点的活力测定法(代谢活性和膜完整性)来测量导致 50%细胞活力降低的浓度(EC)。在非毒性(所有金属均为 300 nM)和毒性(EC;Ag-0.6、Cu-0.9、Cd-3 和 Zn-9 μM)浓度下研究了金属的生物利用度和生物反应性。通过 ICP-MS 测定生物利用度(即细胞内金属积累),通过测量已知金属暴露生物标志物(即金属硫蛋白)和铜和锌转运蛋白(即 ATP7A 和 ZnT1)的 mRNA 水平来测定生物反应性(即金属特异性转录反应的诱导)。暴露介质中的主导金属形态分别为 Zn、CuHPO、CdCl 和 AgCl,分别对应于 Zn、Cu、Cd 和 Ag。EC 显示了金属毒性的层次结构:Ag>Cu>Cd>Zn。在 RTgutGC 细胞中,必需金属的内稳态受到严格调节,而非必需金属更容易积累。非必需金属也更具生物反应性,诱导更高的 MT 和 ZnT1 mRNA 水平。总之,这些发现表明,RTgutGC 中的金属毒性不能仅通过细胞外金属形态来解释,还需要评估金属的生物利用度和生物反应性。