University of Texas Southwestern Medical Center, Dallas, Texas 75390.
University of Texas Southwestern Medical Center, Dallas, Texas 75390
J Neurosci. 2020 Jul 1;40(27):5247-5263. doi: 10.1523/JNEUROSCI.2238-19.2020. Epub 2020 Jun 5.
The accessory olfactory bulb (AOB), the first neural circuit in the mouse accessory olfactory system, is critical for interpreting social chemosignals. Despite its importance, AOB information processing is poorly understood compared with the main olfactory bulb (MOB). Here, we sought to fill gaps in the understanding of AOB interneuron function. We used 2-photon GCaMP6f Ca imaging in an preparation to study chemosensory tuning in AOB external granule cells (EGCs), interneurons hypothesized to broadly inhibit activity in excitatory mitral cells (MCs). In preparations from mice of both sexes, we measured MC and EGC tuning to natural chemosignal blends and monomolecular ligands, finding that EGC tuning was sparser, not broader, than upstream MCs. Simultaneous electrophysiological recording and Ca imaging showed no differences in GCaMP6f-to-spiking relationships in these cell types during simulated sensory stimulation, suggesting that measured EGC sparseness was not due to cell type-dependent variability in GCaMP6f performance. patch-clamp recordings revealed that EGC subthreshold responsivity was far broader than indicated by GCaMP6f Ca imaging, and that monomolecular ligands rarely elicited EGC spiking. These results indicate that EGCs are selectively engaged by chemosensory blends, suggesting different roles for EGCs than analogous interneurons in the MOB. The mouse accessory olfactory system (AOS) interprets social chemosignals, but we poorly understand AOS information processing. Here, we investigate the functional properties of external granule cells (EGCs), a major class of interneurons in the accessory olfactory bulb (AOB). We hypothesized that EGCs, which are densely innervated by excitatory mitral cells (MCs), would show broad chemosensory tuning, suggesting a role in divisive normalization. Using GCaMP6f imaging, we found that EGCs were instead more sparsely tuned than MCs. This was not due to weaker GCaMP6f signaling in EGCs than in MCs. Instead, we found that many MC-activating chemosignals caused only subthreshold EGC responses. This indicates a different role for AOB EGCs compared with analogous cells in the main olfactory bulb.
副嗅球(AOB)是小鼠副嗅觉系统中的第一个神经回路,对于解释社交化学信号至关重要。尽管它很重要,但与主嗅球(MOB)相比,AOB 的信息处理仍知之甚少。在这里,我们试图填补对 AOB 中间神经元功能理解的空白。我们使用双光子 GCaMP6f Ca 成像在 制剂中研究 AOB 外部颗粒细胞(EGC)的化学感觉调谐,这些中间神经元假设广泛抑制兴奋性米尔塔细胞(MC)的活性。在来自两性小鼠的 制剂中,我们测量了 MC 和 EGC 对天然化学信号混合物和单分子配体的调谐,发现 EGC 的调谐比上游 MC 更稀疏,而不是更宽。同时进行的电生理记录和 Ca 成像显示,在模拟感觉刺激过程中,这些细胞类型中 GCaMP6f 到尖峰的关系没有差异,这表明测量的 EGC 稀疏性不是由于 GCaMP6f 性能的细胞类型依赖性变异性引起的。 膜片钳记录显示,EGC 的亚阈值反应性比 GCaMP6f Ca 成像所指示的要宽得多,并且单分子配体很少引起 EGC 尖峰。这些结果表明,EGC 被化学感觉混合物选择性地激活,这表明 EGC 与 MOB 中的类似中间神经元的作用不同。小鼠副嗅觉系统(AOS)解释社交化学信号,但我们对 AOS 信息处理知之甚少。在这里,我们研究了副嗅球(AOB)中主要中间神经元之一的外部颗粒细胞(EGC)的功能特性。我们假设,EGC 由兴奋性米尔塔细胞(MC)密集支配,因此会表现出广泛的化学感觉调谐,表明其在除法归一化中具有作用。使用 GCaMP6f 成像,我们发现 EGC 的调谐反而比 MC 更稀疏。这不是因为 EGC 中的 GCaMP6f 信号比 MC 弱。相反,我们发现许多激活 MC 的化学信号仅引起 EGC 的亚阈值反应。这表明 AOB EGC 与主嗅球中的类似细胞相比具有不同的作用。