Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA.
Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA.
Regul Toxicol Pharmacol. 2020 Aug;115:104682. doi: 10.1016/j.yrtph.2020.104682. Epub 2020 Jun 3.
For short-term chemical inhalation exposures to hazardous chemicals, the incidence of a health effect in biological testing usually conforms to a general linear model with a probit link function dependent on inhalant concentration C and the duration of exposure t. The National Academy's Acute Exposure Guideline Levels (AEGLs) Committee relies on these models when establishing AEGLs. Threshold concentrations at AEGL durations are established by the toxic load equation C x t = constant, which toxic load exponent n (TLE or n-value) directly follows from the bivariate probit model. When multiple probit datasets are available, the AEGL Committee routinely pools studies' incidence data. Such meta-analytical models are valid only when the pooled data are homogeneous, with similar sensitivities and equivalent responses to exposure concentrations and durations. In the present study, the homogeneity of datasets meta-analyzed by the AEGL Committee was examined, finding that 70% of datasets pooled by the AEGL Committee are heterogeneous. In these instances, data pooling leads to a statistically invalid model and TLE estimate, potentially resulting in under- or over-estimated inhalation guidance levels. When data pooling is inappropriate, other meta-analysis options include categorical regression, fixed-effect and random-effects models, or even designation of a key study based on scientific judgement. In the present work, options of TLE meta-analysis are summarized in a decision tree contingent on statistical testing.
对于短期化学吸入暴露于危险化学品,生物测试中健康影响的发生率通常符合一般线性模型,其概率单位链接函数取决于吸入物浓度 C 和暴露持续时间 t。国家科学院急性暴露指导水平 (AEGL) 委员会在建立 AEGL 时依赖于这些模型。AEGL 持续时间的阈值浓度是通过毒负荷方程 Cxt=常数建立的,毒负荷指数 n(TLE 或 n 值)直接遵循双变量概率单位模型。当有多个概率单位数据集可用时,AEGL 委员会通常会汇总研究的发病率数据。只有当汇总数据具有同质性,对暴露浓度和持续时间具有相似的敏感性和等效反应时,这种荟萃分析模型才有效。在本研究中,检查了 AEGL 委员会分析的数据集的同质性,发现 AEGL 委员会汇总的 70%的数据集是异质的。在这些情况下,数据汇总导致统计上无效的模型和 TLE 估计,可能导致吸入指导水平低估或高估。当数据汇总不适用时,其他荟萃分析选项包括分类回归、固定效应和随机效应模型,甚至根据科学判断指定关键研究。在本工作中,TLE 荟萃分析的选项根据统计检验总结在决策树中。