Yin Xuemin, Li Hejun, Han Liyuan, Yuan Ruimei, Lu Jinhua
State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an 710072, China.
State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an 710072, China.
J Colloid Interface Sci. 2020 Oct 1;577:481-493. doi: 10.1016/j.jcis.2020.05.101. Epub 2020 May 28.
Electrode materials with hierarchical self-supporting core-shell structures, with the metric of structural advantages and synergetic effect for different components, have been widely applied in supercapacitor. Besides, interface designing would improve the bonding of different components and further enhance the stability of electrochemical performance. In this work, by the introduction of CNTs layer to construct the conductive and rugged interface on SiC nanowires (NWs), the formed core-shell SiC@CNTs network were served as conductive skeleton for supporting NiCoO nanosheets (NSs). Benefiting from the unique hierarchical structure with designed interface, the formed SiC@CNTs@NiCoO electrode exhibits exceptional electrochemical performance with high specific capacitance of 2302F g (319.7 mAh g) at 1 A g, excellent rate capability (86.3% capacitance retention at 20 A g) and outstanding cycling stability (95% capacitance retention after 5000 cycles). Furthermore, the hybrid supercapacitor assembled SiC@CNTs@NiCoO and activated carbon (AC), exhibits a high energy density of 64.2 Wh kg at a power density of 0.79 kW kg, long cycle life and good flexibility. More impressively, this work provides a facile method for rationally constructing electrode materials with hierarchical structures for high-performance flexible energy storage devices.
具有分级自支撑核壳结构的电极材料,凭借其结构优势以及不同组分间的协同效应,已在超级电容器中得到广泛应用。此外,界面设计能够改善不同组分间的结合,进而增强电化学性能的稳定性。在本工作中,通过引入碳纳米管层以在碳化硅纳米线(NWs)上构建导电且粗糙的界面,所形成的核壳结构碳化硅@碳纳米管网络用作支撑镍钴氧化物纳米片(NSs)的导电骨架。得益于具有设计界面的独特分级结构,所形成的碳化硅@碳纳米管@镍钴氧化物电极展现出优异的电化学性能,在1 A g电流密度下比电容高达2302 F g(319.7 mAh g),具有出色的倍率性能(在20 A g电流密度下电容保持率为86.3%)以及卓越的循环稳定性(5000次循环后电容保持率为95%)。此外,由碳化硅@碳纳米管@镍钴氧化物和活性炭(AC)组装而成的混合超级电容器,在功率密度为0.79 kW kg时能量密度高达64.2 Wh kg,具有长循环寿命和良好的柔韧性。更令人印象深刻的是,本工作提供了一种简便方法,用于合理构建具有分级结构的电极材料,以用于高性能柔性储能器件。