Li Hui, Kalaiyarasan Gopi, Cao Xiangyu, Ali Mumtaz, Koo Bonkee, Kim Wooyeon, Lee Doyeon, Ko Min Jae
Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
Department of Battery Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
Small. 2025 Sep;21(36):e04350. doi: 10.1002/smll.202504350. Epub 2025 Jul 23.
The exploration of innovative and high-efficiency energy storage materials is crucial for advancing high-performance supercapacitors. In this study, a novel composite material is synthesized, comprising multilayered MXene (TiCT) nanoparticles integrated with porous NiCoSe nanosheets. The accordion-like nanostructure of MXene and its strong interfacial interactions enhance the surface area and cycling stability of the nanocomposite. Additionally, substituting selenium (Se) for Ni-Co-based hydroxides modulates orbital hybridization with the corresponding metal cations, significantly improving electrochemical activity and reducing the adsorption/desorption energy barrier for electrolyte ions. The synergistic interaction between these two materials enabled the composite electrode to achieve a high specific capacity of 796.25 C g at 1 A g while maintaining over 90% of its initial capacity after 8000 cycles. Furthermore, the as-fabricated asymmetric hybrid capacitor, employing activated carbon as the negative electrode, delivered an energy density of 64.36 Wh kg at a power density of 0.8 kW kg, surpassing the performance of most previously reported hybrid capacitors. The developed composite structure holds significant potential for integration into various electrochemical devices, such as batteries, sensors, and electrolyzers.
探索创新型和高效储能材料对于推进高性能超级电容器至关重要。在本研究中,合成了一种新型复合材料,其由多层MXene(TiCT)纳米颗粒与多孔NiCoSe纳米片集成而成。MXene的手风琴状纳米结构及其强界面相互作用提高了纳米复合材料的表面积和循环稳定性。此外,用硒(Se)替代镍钴基氢氧化物可调节与相应金属阳离子的轨道杂化,显著提高电化学活性并降低电解质离子的吸附/解吸能垒。这两种材料之间的协同相互作用使复合电极在1 A g时实现了796.25 C g的高比容量,同时在8000次循环后仍保持其初始容量的90%以上。此外,以活性炭为负极制备的非对称混合电容器在功率密度为0.8 kW kg时的能量密度为64.36 Wh kg,超过了大多数先前报道的混合电容器的性能。所开发的复合结构在集成到各种电化学装置(如电池、传感器和电解槽)方面具有巨大潜力。