Suppr超能文献

通过无监督机器学习定义冠状动脉血流储备低的心外膜功能性狭窄的异质性。

Defining heterogeneity of epicardial functional stenosis with low coronary flow reserve by unsupervised machine learning.

作者信息

Hamaya Rikuta, Hoshino Masahiro, Yonetsu Taishi, Lee Joo Myung, Koo Bon-Kwon, Escaned Javier, Kakuta Tsunekazu

机构信息

Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan.

Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

Heart Vessels. 2020 Nov;35(11):1527-1536. doi: 10.1007/s00380-020-01640-x. Epub 2020 Jun 6.

Abstract

Low CFR is associated with poor prognosis, whereas it is a heterogeneous condition according to the actual coronary flow, such as high resting or low hyperemic coronary flow, which should have different physiological traits and clinical implications. This study aimed to detect and define the sub-phenotypes of vessels with low coronary flow reserve (CFR) epicardial disease by unsupervised machine-learning methods. Hierarchical clustering was applied to 376 vessels from 364 patients with CFR less than the median and fractional flow reserve ≤ 0.8 from a global, multicenter registry. Detailed features of coronary flow physiology and survivals from vessel-oriented composite outcomes (VOCO) were assessed according to the clusters. Clustering defined three distinct physiological subgroups (PS). PS1 (n = 151) were characterized by high resting coronary flow, dominantly left anterior descending artery (LAD) lesions. PS2 (n = 131) were, in contrast, low hyperemic coronary flow, mainly LAD lesions. PS3 (n = 82) mostly consisted of non-LAD lesions with similar flow status to PS1 except for the low hyperemic Pd. Survivals from VOCO were significantly different according to the clusters (p = 0.005) and PS3 had the highest rate of VOCO. In a COX proportional model predicting VOCO, there was a significant interaction between PCI and PSs, suggesting potentially different effects of PCI on outcome between PS1 and PS2. The unsupervised machine-learning approaches provided unique insights into low CFR condition. Among low CFR epicardial lesions, high resting flow with low hyperemic Pd might be related to poor prognosis, and low hyperemic flow in LAD could benefit from elective PCI. CLINICAL TRIAL REGISTRATION INFORMATION: https://clinicaltrials.gov/ct2/show/NCT03690713 , NCT03690713.

摘要

低冠脉血流储备(CFR)与预后不良相关,然而根据实际冠脉血流情况,它是一种异质性疾病,比如静息冠脉血流高或充血性冠脉血流低,这两种情况应具有不同的生理特征和临床意义。本研究旨在通过无监督机器学习方法检测并定义低冠脉血流储备(CFR)的心外膜疾病血管的亚表型。对来自一个全球多中心注册研究中364例CFR低于中位数且血流储备分数≤0.8的患者的376条血管应用层次聚类法。根据聚类情况评估冠脉血流生理学的详细特征以及血管导向性复合结局(VOCO)的生存率。聚类定义了三个不同的生理亚组(PS)。PS1(n = 151)的特征是静息冠脉血流高,主要为左前降支(LAD)病变。相比之下,PS2(n = 131)是充血性冠脉血流低,主要也是LAD病变。PS3(n = 82)大多由非LAD病变组成,除了充血性Pd低外,其血流状态与PS1相似。VOCO的生存率根据聚类情况有显著差异(p = 0.005),且PS3的VOCO发生率最高。在预测VOCO的COX比例模型中,PCI与PS之间存在显著交互作用,提示PCI对PS1和PS2结局的影响可能不同。无监督机器学习方法为低CFR情况提供了独特见解。在低CFR的心外膜病变中,静息血流高且充血性Pd低可能与预后不良有关,而LAD的充血性血流低可能从选择性PCI中获益。临床试验注册信息:https://clinicaltrials.gov/ct2/show/NCT03690713,NCT03690713

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验