Suppr超能文献

利用神经网络和集成树方法评估韩国的生化需氧量。

Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea.

机构信息

Department of Railroad Construction and Safety Engineering, Dongyang University, Yeongju, 36040, Republic of Korea.

Department of Civil Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

出版信息

J Environ Manage. 2020 Sep 15;270:110834. doi: 10.1016/j.jenvman.2020.110834. Epub 2020 Jun 5.

Abstract

The biochemical oxygen demand (BOD), one of widely utilized variables for water quality assessment, is metric for the ecological division in rivers. Since the traditional approach to predict BOD is time-consuming and inaccurate due to inconstancies in microbial multiplicity, alternative methods have been recommended for more accurate prediction of BOD. This study investigated the capability of a novel deep learning-based model, Deep Echo State Network (Deep ESN), for predicting BOD, based on various water quality variables, at Gongreung and Gyeongan stations, South Korea. The model was compared with the Extreme Learning Machine (ELM) and two ensemble tree models comprising the Gradient Boosting Regression Tree (GBRT) and Random Forests (RF). Diverse water quality variables (i.e., BOD, potential of Hydrogen (pH), electrical conductivity (EC), dissolved oxygen (DO), water temperature (WT), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (T-N), and total phosphorus (T-P)) were utilized for developing the Deep ESN, ELM, GBRT, and RF with five input combinations (i.e., Categories 1-5). These models were evaluated by root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), coefficient of determination (R), and correlation coefficient (R). Overall evaluations suggested that the Deep ESN5 model provided the most reliable predictions of BOD among all the models at both stations.

摘要

生化需氧量(BOD)是水质评估中广泛使用的变量之一,是河流生态划分的指标。由于微生物多样性的变化,传统的 BOD 预测方法既耗时又不准确,因此推荐了替代方法以更准确地预测 BOD。本研究探讨了一种基于深度学习的新型模型——深度回声状态网络(Deep ESN),在韩国 Gongreung 和 Gyeongan 站,基于各种水质变量预测 BOD 的能力。将该模型与极限学习机(ELM)以及包括梯度提升回归树(GBRT)和随机森林(RF)在内的两种集成树模型进行了比较。利用多种水质变量(即 BOD、氢离子潜能(pH)、电导率(EC)、溶解氧(DO)、水温度(WT)、化学需氧量(COD)、悬浮固体(SS)、总氮(T-N)和总磷(T-P))开发了 Deep ESN、ELM、GBRT 和 RF 模型,有五种输入组合(即类别 1-5)。通过均方根误差(RMSE)、纳什-苏特克里夫效率(NSE)、决定系数(R)和相关系数(R)对这些模型进行了评估。总体评估表明,在两个站点,Deep ESN5 模型在所有模型中提供了最可靠的 BOD 预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验