Traugutt Nicholas A, Mistry Devesh, Luo Chaoqian, Yu Kai, Ge Qi, Yakacki Christopher M
University of Colorado Denver, 1200 Larimer Street, Campus Box 112, Denver, CO, 80217, USA.
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P. R. China.
Adv Mater. 2020 Jul;32(28):e2000797. doi: 10.1002/adma.202000797. Epub 2020 Jun 8.
Digital Light Processing (DLP) 3D printing enables the creation of hierarchical complex structures with specific micro- and macroscopic architectures that are impossible to achieve through traditional manufacturing methods. Here, this hierarchy is extended to the mesoscopic length scale for optimized devices that dissipate mechanical energy. A photocurable, thus DLP-printable main-chain liquid crystal elastomer (LCE) resin is reported and used to print a variety of complex, high-resolution energy-dissipative devices. Using compressive mechanical testing, the stress-strain responses of 3D-printed LCE lattice structures are shown to have 12 times greater rate-dependence and up to 27 times greater strain-energy dissipation compared to those printed from a commercially available photocurable elastomer resin. The reported behaviors of these structures provide further insight into the much-overlooked energy-dissipation properties of LCEs and can inspire the development of high-energy-absorbing device applications.
数字光处理(DLP)3D打印能够创建具有特定微观和宏观结构的分层复杂结构,而这些结构是传统制造方法无法实现的。在此,这种层次结构被扩展到介观长度尺度,以优化耗散机械能的器件。本文报道了一种可光固化、因此可通过DLP打印的主链液晶弹性体(LCE)树脂,并用于打印各种复杂的高分辨率能量耗散器件。通过压缩力学测试表明,与由市售可光固化弹性体树脂打印的结构相比,3D打印的LCE晶格结构的应力-应变响应具有高12倍的速率依赖性和高达27倍的应变能耗散。这些结构所表现出的特性进一步深入揭示了LCEs中被大量忽视的能量耗散特性,并能够激发高能量吸收器件应用的发展。