Suppr超能文献

一种四因素免疫风险评分特征可预测脊索瘤患者的临床结局。

A four-factor immune risk score signature predicts the clinical outcome of patients with spinal chordoma.

作者信息

Zou Ming-Xiang, Pan Yue, Huang Wei, Zhang Tao-Lan, Escobar David, Wang Xiao-Bin, Jiang Yi, She Xiao-Ling, Lv Guo-Hua, Li Jing

机构信息

Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China.

Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.

出版信息

Clin Transl Med. 2020 Jan;10(1):224-237. doi: 10.1002/ctm2.4.

Abstract

BACKGROUND

Currently, the measurement of immune cells in previous studies is usually subjective, and no immune-based prognostic model has been established for chordoma. In this study, we sought to simultaneously measure tumor-infiltrating lymphocyte (TIL) subtypes in chordoma samples using an objective method and develop an immune risk score (IRS) model for survival prediction.

METHODS

Multiplexed quantitative immunofluorescence staining was used to determine the TIL levels in the tumoral and stromal subareas of 114 spinal chordoma specimens (54 in the training and 60 in the validation cohort) for programmed death-1 (PD-1), CD3, CD8, CD20 (where CD is cluster of differentiation), and FOXP3. Flow cytometry was performed to validate the immunofluorescence assay for lymphocyte measurement on an additional five fresh chordoma specimens. Subsequently, the IRS model was built using the least absolute shrinkage and selection operator (LASSO) Cox regression method.

RESULTS

Flow cytometry and quantitative immunofluorescence showed similar lymphocytic percentages and TIL subpopulation proportions in the fresh tumor specimens. With the training data, the LASSO model identified four immune features for IRS construction: FOXP3, PD-1, FOXP3, and CD8. In both cohorts, a high IRS was significantly associated with tumoral programmed cell death-1 ligand 1 expression, Enneking inappropriate tumor resection, and surrounding muscle invasion by tumor. Multivariate Cox regression and stratified analysis in the two cohorts revealed that the IRS was an independent predictor and could effectively separate patients with similar Enneking staging into different risk subgroups, with significantly different survival rates. Further receiver operating characteristic analysis found that the IRS classifier had a better prognostic value than the traditional clinicopathological factors and compensated for the deficiency of Enneking staging for outcome prediction. More importantly, a nomogram based on the IRS and clinical predictors showed adequate performance in estimating disease recurrence and survival of patients.

CONCLUSIONS

These data support the use of the IRS signature as a reliable prognostic tool in spinal chordoma and may facilitate individualized therapy decision making for patients.

摘要

背景

目前,以往研究中免疫细胞的测量通常具有主观性,且尚未建立基于免疫的脊索瘤预后模型。在本研究中,我们试图使用一种客观方法同时测量脊索瘤样本中的肿瘤浸润淋巴细胞(TIL)亚型,并开发一种免疫风险评分(IRS)模型用于生存预测。

方法

采用多重定量免疫荧光染色法,测定114例脊柱脊索瘤标本(训练队列54例,验证队列60例)肿瘤及基质亚区域中程序性死亡-1(PD-1)、CD3、CD8、CD20(其中CD为分化簇)和FOXP3的TIL水平。对另外5例新鲜脊索瘤标本进行流式细胞术,以验证免疫荧光法检测淋巴细胞的准确性。随后,使用最小绝对收缩和选择算子(LASSO)Cox回归方法构建IRS模型。

结果

流式细胞术和定量免疫荧光显示新鲜肿瘤标本中淋巴细胞百分比和TIL亚群比例相似。利用训练数据,LASSO模型确定了用于构建IRS的四个免疫特征:FOXP3、PD-1、FOXP3和CD8。在两个队列中,高IRS均与肿瘤程序性细胞死亡-1配体1表达、Enneking不适当肿瘤切除以及肿瘤周围肌肉浸润显著相关。两个队列中的多变量Cox回归和分层分析显示,IRS是一个独立的预测因子,能够有效地将具有相似Enneking分期的患者分为不同的风险亚组,生存率差异显著。进一步的受试者工作特征分析发现,IRS分类器比传统临床病理因素具有更好的预后价值,并弥补了Enneking分期在预后预测方面的不足。更重要的是,基于IRS和临床预测因子的列线图在估计患者疾病复发和生存方面表现良好。

结论

这些数据支持将IRS特征作为脊柱脊索瘤可靠的预后工具,并可能有助于为患者制定个体化治疗决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验