Agúndez M, Martínez J I, de Andres P L, Cernicharo J, Martín-Gago J A
Instituto de Física Fundamental, CSIC, C/ Serrano 123, 28006 Madrid, Spain.
Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Cantoblanco, Spain.
Astron Astrophys. 2020 May;637. Epub 2020 May 14.
Chemical equilibrium has proven extremely useful for predicting the chemical composition of AGB atmospheres. Here we use a recently developed code and an updated thermochemical database that includes gaseous and condensed species involving 34 elements to compute the chemical equilibrium composition of AGB atmospheres of M-, S-, and C-type stars. We include for the first time Ti C clusters, with = 1-4 and = 1-4, and selected larger clusters ranging up to TiC, for which thermochemical data are obtained from quantum-chemical calculations. Our main aims are to systematically survey the main reservoirs of each element in AGB atmospheres, review the successes and failures of chemical equilibrium by comparing it with the latest observational data, identify potentially detectable molecules that have not yet been observed, and diagnose the most likely gas-phase precursors of dust and determine which clusters might act as building blocks of dust grains. We find that in general, chemical equilibrium reproduces the observed abundances of parent molecules in circumstellar envelopes of AGB stars well. There are, however, severe discrepancies of several orders of magnitude for some parent molecules that are observed to be anomalously overabundant with respect to the predictions of chemical equilibrium. These are HCN, CS, NH, and SO in M-type stars, HO and NH in S-type stars, and the hydrides HO, NH, SiH, and PH in C-type stars. Several molecules have not yet been observed in AGB atmospheres but are predicted with non-negligible abundances and are good candidates for detection with observatories such as ALMA. The most interesting ones are SiC, SiNH, SiCl, PS, HBO, and the metal-containing molecules MgS, CaS, CaOH, CaCl, CaF, ScO, ZrO, VO, FeS, CoH, and NiS. In agreement with previous studies, the first condensates predicted to appear in C-rich atmospheres are found to be carbon, TiC, and SiC, while AlO is the first major condensate expected in O-rich outflows. According to our chemical equilibrium calculations, the gas-phase precursors of carbon dust are probably acetylene, atomic carbon, and/or C, while for silicon carbide dust, the most likely precursors are the molecules SiC and SiC. In the case of titanium carbide dust, atomic Ti is the major reservoir of this element in the inner regions of AGB atmospheres, and therefore it is probably the main supplier of titanium during the formation of TiC dust. However, chemical equilibrium predicts that large titanium-carbon clusters such as TiC and TiC become the major reservoirs of titanium at the expense of atomic Ti in the region where condensation of TiC is expected to occur. This suggests that the assembly of large Ti C clusters might be related to the formation of the first condensation nuclei of TiC. In the case of AlO dust, chemical equilibrium indicates that atomic Al and the carriers of Al-O bonds AlOH, AlO, and AlO are the most likely gas-phase precursors.
化学平衡已被证明在预测渐近巨星分支(AGB)恒星大气的化学成分方面极为有用。在此,我们使用一个最近开发的代码和一个更新的热化学数据库,该数据库包含涉及34种元素的气态和凝聚态物质,以计算M型、S型和C型恒星AGB大气的化学平衡组成。我们首次纳入了TiₓCᵧ团簇,其中x = 1 - 4且y = 1 - 4,以及选定的更大团簇直至TiC,其热化学数据是通过量子化学计算获得的。我们的主要目标是系统地研究AGB大气中每种元素的主要储存库,通过将化学平衡与最新观测数据进行比较来回顾化学平衡的成功与失败之处,识别尚未被观测到但可能被检测到的分子,并诊断尘埃最可能的气相前体,以及确定哪些团簇可能充当尘埃颗粒的构建块。我们发现,一般来说,化学平衡能很好地再现AGB恒星星际包层中母体分子的观测丰度。然而,对于一些观测到的母体分子,其相对于化学平衡预测异常丰富,存在几个数量级的严重差异。这些分子在M型恒星中有HCN、CS、NH和SO,在S型恒星中有H₂O和NH₃,在C型恒星中有氢化物H₂O、NH₃、SiH₄和PH₃。在AGB大气中尚未观测到几种分子,但预测其丰度不可忽略,是诸如阿塔卡马大型毫米/亚毫米波阵(ALMA)等天文台进行探测的良好候选对象。最有趣的是SiC、SiNH、SiCl、PS、HBO,以及含金属分子MgS、CaS、CaOH、CaCl、CaF、ScO、ZrO、VO、FeS、CoH和NiS。与先前的研究一致,预计在富碳大气中出现的首批凝聚物是碳、TiC和SiC,而AlO是富氧外流中预期的首个主要凝聚物。根据我们的化学平衡计算,碳尘埃的气相前体可能是乙炔、原子碳和/或C₂,而对于碳化硅尘埃,最可能的前体是分子SiC和SiC₂。就碳化钛尘埃而言,原子Ti是AGB大气内部区域该元素的主要储存库,因此它可能是TiC尘埃形成过程中钛的主要供应者。然而,化学平衡预测,在预期发生TiC凝聚的区域,诸如Ti₃C₂和Ti₄C₃等大型钛 - 碳团簇会成为钛的主要储存库,而原子Ti的含量会减少。这表明大型TiₓCᵧ团簇的组装可能与TiC的首个凝聚核的形成有关。就AlO尘埃而言,化学平衡表明原子Al以及Al - O键载体AlOH、AlO⁺和AlO₂⁺是最可能的气相前体。