Lukman Adewale F, Ayinde Kayode, Golam Kibria B M, Jegede Segun L
Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria.
Department of Statistics, Federal University of Technology, Akure, Nigeria.
ScientificWorldJournal. 2020 May 15;2020:3192852. doi: 10.1155/2020/3192852. eCollection 2020.
The general linear regression model has been one of the most frequently used models over the years, with the ordinary least squares estimator (OLS) used to estimate its parameter. The problems of the OLS estimator for linear regression analysis include that of multicollinearity and outliers, which lead to unfavourable results. This study proposed a two-parameter ridge-type modified M-estimator (RTMME) based on the M-estimator to deal with the combined problem resulting from multicollinearity and outliers. Through theoretical proofs, Monte Carlo simulation, and a numerical example, the proposed estimator outperforms the modified ridge-type estimator and some other considered existing estimators.
多年来,一般线性回归模型一直是最常用的模型之一,通常使用普通最小二乘估计器(OLS)来估计其参数。线性回归分析中OLS估计器的问题包括多重共线性和异常值问题,这些问题会导致不理想的结果。本研究基于M估计器提出了一种双参数岭型修正M估计器(RTMME),以处理由多重共线性和异常值导致的组合问题。通过理论证明、蒙特卡罗模拟和一个数值例子,所提出的估计器优于修正岭型估计器和其他一些考虑的现有估计器。