Suppr超能文献

线性回归模型的双参数修正岭型M估计量

Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model.

作者信息

Lukman Adewale F, Ayinde Kayode, Golam Kibria B M, Jegede Segun L

机构信息

Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria.

Department of Statistics, Federal University of Technology, Akure, Nigeria.

出版信息

ScientificWorldJournal. 2020 May 15;2020:3192852. doi: 10.1155/2020/3192852. eCollection 2020.

Abstract

The general linear regression model has been one of the most frequently used models over the years, with the ordinary least squares estimator (OLS) used to estimate its parameter. The problems of the OLS estimator for linear regression analysis include that of multicollinearity and outliers, which lead to unfavourable results. This study proposed a two-parameter ridge-type modified M-estimator (RTMME) based on the M-estimator to deal with the combined problem resulting from multicollinearity and outliers. Through theoretical proofs, Monte Carlo simulation, and a numerical example, the proposed estimator outperforms the modified ridge-type estimator and some other considered existing estimators.

摘要

多年来,一般线性回归模型一直是最常用的模型之一,通常使用普通最小二乘估计器(OLS)来估计其参数。线性回归分析中OLS估计器的问题包括多重共线性和异常值问题,这些问题会导致不理想的结果。本研究基于M估计器提出了一种双参数岭型修正M估计器(RTMME),以处理由多重共线性和异常值导致的组合问题。通过理论证明、蒙特卡罗模拟和一个数值例子,所提出的估计器优于修正岭型估计器和其他一些考虑的现有估计器。

相似文献

1
Two-Parameter Modified Ridge-Type M-Estimator for Linear Regression Model.线性回归模型的双参数修正岭型M估计量
ScientificWorldJournal. 2020 May 15;2020:3192852. doi: 10.1155/2020/3192852. eCollection 2020.
2
Unbiased K-L estimator for the linear regression model.无偏 K-L 估计量在线性回归模型中的应用。
F1000Res. 2021 Aug 19;10:832. doi: 10.12688/f1000research.54990.1. eCollection 2021.
5
A new class of Poisson Ridge-type estimator.一类新的泊松岭型估计量。
Sci Rep. 2023 Mar 27;13(1):4968. doi: 10.1038/s41598-023-32119-0.
8
Modified ridge-type for the Poisson regression model: simulation and application.泊松回归模型的改进岭型:模拟与应用
J Appl Stat. 2021 Feb 22;49(8):2124-2136. doi: 10.1080/02664763.2021.1889998. eCollection 2022.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验