Valle Luca F, Ruan Dan, Dang Audrey, Levin-Epstein Rebecca G, Patel Ankur P, Weidhaas Joanne B, Nickols Nicholas G, Lee Percy P, Low Daniel A, Qi X Sharon, King Christopher R, Steinberg Michael L, Kupelian Patrick A, Cao Minsong, Kishan Amar U
Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States.
David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
Front Oncol. 2020 May 20;10:786. doi: 10.3389/fonc.2020.00786. eCollection 2020.
Dosimetric predictors of toxicity after Stereotactic Body Radiation Therapy (SBRT) are not well-established. We sought to develop a multivariate model that predicts Common Terminology Criteria for Adverse Events (CTCAE) late grade 2 or greater genitourinary (GU) toxicity by interrogating the entire dose-volume histogram (DVH) from a large cohort of prostate cancer patients treated with SBRT on prospective trials. Three hundred and thirty-nine patients with late CTCAE toxicity data treated with prostate SBRT were identified and analyzed. All patients received 40 Gy in five fractions, every other day, using volumetric modulated arc therapy. For each patient, we examined 910 candidate dosimetric features including maximum dose, volumes of each organ [CTV, organs at risk (OARs)], V100%, and other granular volumetric/dosimetric indices at varying volumetric/dosimetric values from the entire DVH as well as ADT use to model and predict toxicity from SBRT. Training and validation subsets were generated with 90 and 10% of the patients in our cohort, respectively. Predictive accuracy was assessed by calculating the area under the receiver operating curve (AROC). Univariate analysis with student -test was first performed on each candidate DVH feature. We subsequently performed advanced machine-learning multivariate analyses including classification and regression tree (CART), random forest, boosted tree, and multilayer neural network. Median follow-up time was 32.3 months (range 3-98.9 months). Late grade ≥2 GU toxicity occurred in 20.1% of patients in our series. No single dosimetric parameter had an AROC for predicting late grade ≥2 GU toxicity on univariate analysis that exceeded 0.599. Optimized CART modestly improved prediction accuracy, with an AROC of 0.601, whereas other machine learning approaches did not improve upon univariate analyses. CART-based machine learning multivariate analyses drawing from 910 dosimetric features and ADT use modestly improves upon clinical prediction of late GU toxicity alone, yielding an AROC of 0.601. Biologic predictors may enhance predictive models for identifying patients at risk for late toxicity after SBRT.
立体定向体部放射治疗(SBRT)后毒性的剂量学预测指标尚未完全确立。我们试图通过分析大量接受SBRT治疗的前列腺癌患者前瞻性试验中的完整剂量体积直方图(DVH),开发一种多变量模型,以预测不良事件通用术语标准(CTCAE)2级及以上的晚期泌尿生殖系统(GU)毒性。我们确定并分析了339例有晚期CTCAE毒性数据且接受前列腺SBRT治疗的患者。所有患者均采用容积调强弧形放疗,每隔一天分5次给予40 Gy剂量。对于每位患者,我们检查了910个候选剂量学特征,包括最大剂量、每个器官的体积[临床靶体积(CTV)、危及器官(OAR)]、V100%,以及来自整个DVH的不同体积/剂量值下的其他精细体积/剂量指标,以及使用雄激素剥夺治疗(ADT)来建模和预测SBRT的毒性。我们分别用队列中90%和10%的患者生成训练子集和验证子集。通过计算受试者操作特征曲线下面积(AROC)评估预测准确性。首先对每个候选DVH特征进行学生t检验的单变量分析。随后,我们进行了先进的机器学习多变量分析,包括分类与回归树(CART)、随机森林、增强树和多层神经网络。中位随访时间为32.3个月(范围3 - 98.9个月)。在我们的系列研究中,20.1%的患者出现了晚期≥2级GU毒性。在单变量分析中,没有单一剂量学参数预测晚期≥2级GU毒性的AROC超过0.599。优化后的CART适度提高了预测准确性,AROC为0.601,而其他机器学习方法在单变量分析基础上并未有所改善。基于CART的机器学习多变量分析从910个剂量学特征和ADT使用情况中得出,仅适度改善了晚期GU毒性的临床预测,AROC为0.601。生物学预测指标可能会增强预测模型,以识别SBRT后有晚期毒性风险的患者。