Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alps, Grenoble, France.
Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alps, Grenoble, France.
Biochem Biophys Res Commun. 2020 Aug 6;528(4):650-657. doi: 10.1016/j.bbrc.2020.05.107. Epub 2020 Jun 6.
The extension of islet transplantation to a wider number of type 1 diabetes patients is compromised by severe adverse events related to the immunosuppressant therapy required for allogenic islet transplantation. In this context, microencapsulation offers the prospects of immunosuppressive-free therapy by physically isolating islets from the immune system. However, current biomaterials need to be optimized to: improve biocompatibility, guaranty the maintenance of graft viability and functionality, and prevent fibrosis overgrowth around the capsule in vivo. Accumulating evidence suggest that mesenchymal stem cells (MSCs) and anchor points consisting of tripeptides arg-gly-asp (RGD) have cytoprotective effects on pancreatic islets. Here, we investigated the effect of supplementing reference M-rich alginate microcapsules with MSCs and RGD-G rich alginate on bioprocessing as well as on human pancreatic islets viability and functionality.
We characterized the microcapsules components, and then for the new microcapsule composite product: we analyzed the empty capsules biocompatibility and then investigated the benefits of MSCs and RGD-G rich alginate on viability and functionality on the encapsulated human pancreatic islets in vitro. We performed viability tests by confocal microscopy and glucose stimulated insulin secretion (GSIS) test in vitro to assess the functionality of naked and encapsulated islets.
Encapsulation in reference M-rich alginate capsules induced a reduction in viability and functionality compared to naked islets. This side-effect of encapsulation was in part counteracted by the presence of MSCs but the restoration was complete with the combination of both MSCs and the RGD-G rich alginate.
The present findings show that bioprocessing a favorable composite environment inside the M-rich alginate capsule with both MSCs and RGD-G rich alginate improves human islets survival and functionality in vitro.
由于同种异体胰岛移植所需的免疫抑制剂治疗会引起严重的不良反应,因此胰岛移植的应用范围受到了限制。在这种情况下,微囊化技术提供了免疫抑制治疗的前景,它可以将胰岛与免疫系统物理隔离。然而,目前的生物材料需要进行优化,以提高生物相容性、保证移植物的活力和功能的维持,并防止囊内纤维化过度生长。越来越多的证据表明,间充质干细胞(MSCs)和三肽精氨酸-甘氨酸-天冬氨酸(RGD)锚点对胰岛具有细胞保护作用。在这里,我们研究了在参考 M 丰富的藻酸盐微囊中补充 MSCs 和 RGD-G 丰富的藻酸盐对生物加工以及对人胰岛活力和功能的影响。
我们对微胶囊的成分进行了表征,然后对新的微胶囊复合产品进行了分析:我们分析了空胶囊的生物相容性,然后研究了 MSCs 和 RGD-G 丰富的藻酸盐对体外包裹的人胰岛活力和功能的益处。我们通过共聚焦显微镜和体外葡萄糖刺激胰岛素分泌(GSIS)试验进行了活力测试,以评估裸露和包裹胰岛的功能。
与裸露的胰岛相比,包裹在参考 M 丰富的藻酸盐胶囊中会导致活力和功能降低。这种包裹的副作用部分被 MSCs 的存在所抵消,但与 MSCs 和 RGD-G 丰富的藻酸盐的结合完全恢复了活力。
本研究结果表明,在 M 丰富的藻酸盐胶囊内生物加工一个有利的复合环境,同时结合 MSCs 和 RGD-G 丰富的藻酸盐,可提高人胰岛在体外的存活率和功能。