Morozov Matvey
Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium.
Soft Matter. 2020 Jun 24;16(24):5624-5632. doi: 10.1039/d0sm00662a.
Experiments indicate that microdroplets undergoing micellar solubilization in the bulk of surfactant solution may excite Marangoni flows and self-propel spontaneously. Surprisingly, self-propulsion emerges even when the critical micelle concentration is exceeded and the Marangoni effect should be saturated. To explain this, we propose a novel model of a dissolving active droplet that is based on two fundamental assumptions: (a) products of the solubilization may inhibit surfactant adsorption; (b) solubilization prevents the formation of a monolayer of surfactant molecules at the droplet interface. We use numerical simulations and asymptotic methods to demonstrate that our model indeed features spontaneous droplet self-propulsion. Our key finding is that in the case of axisymmetric flow and concentration fields, two qualitatively different types of droplet behavior may be stable for the same values of the physical parameters: steady self-propulsion and steady symmetric pumping. Although stability of these steady regimes is not guaranteed in the absence of axial symmetry, we argue that they will retain their respective stable manifolds in the phase space of a fully 3D problem.
实验表明,在大量表面活性剂溶液中经历胶束增溶作用的微滴可能会激发马兰戈尼流并自发地自我推进。令人惊讶的是,即使超过临界胶束浓度且马兰戈尼效应应已饱和,自我推进现象仍会出现。为了解释这一点,我们提出了一种基于两个基本假设的溶解活性微滴的新模型:(a)增溶产物可能会抑制表面活性剂吸附;(b)增溶作用会阻止在微滴界面形成表面活性剂分子单层。我们使用数值模拟和渐近方法来证明我们的模型确实具有微滴自发自我推进的特征。我们的关键发现是,在轴对称流动和浓度场的情况下,对于相同的物理参数值,两种性质不同的微滴行为可能是稳定的:稳定的自我推进和稳定的对称泵送。尽管在没有轴对称的情况下不能保证这些稳定状态的稳定性,但我们认为它们将在完全三维问题的相空间中保留各自的稳定流形。