Suppr超能文献

基于微流控芯片的胰岛芯片模型增强了大鼠胰岛的基因表达和功能。

Microwell-based pancreas-on-chip model enhances genes expression and functionality of rat islets of Langerhans.

机构信息

Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France; CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.

Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.

出版信息

Mol Cell Endocrinol. 2020 Aug 20;514:110892. doi: 10.1016/j.mce.2020.110892. Epub 2020 Jun 9.

Abstract

Organ-on-chip technology is a promising tool for investigating physiological in vitro responses in drug screening development, and in advanced disease models. Within this framework, we investigated the behavior of rat islets of Langerhans in an organ-on-chip model. The islets were trapped by sedimentation in a biochip with a microstructure based on microwells, and perfused for 5 days of culture. The live/dead assay confirmed the high viability of the islets in the biochip cultures. The microfluidic culture leads to upregulation of mRNA levels of important pancreatic islet genes: Ins1, App, Insr, Gcgr, Reg3a and Neurod. Furthermore, insulin and glucagon secretion were higher in the biochips compared to the Petri conditions after 5 days of culture. We also confirmed glucose-induced insulin secretion in biochips via high and low glucose stimulations leading to high/low insulin secretion. The high responsiveness of the pancreatic islets to glucagon-like peptide 1 (GLP-1) stimulation in the biochips was reflected by the upregulation of mRNA levels of Gcgr, Reg3a, Neurog3, Ins1, Ins2, Stt and Glp-1r and by increased insulin secretion. The results obtained highlighted the functionality of the islets in the biochips and illustrated the potential of our pancreas-on-chip model for future pancreatic disease modeling and anti-diabetic drugs screening.

摘要

器官芯片技术是一种很有前途的工具,可用于研究药物筛选开发和先进疾病模型中的生理体外反应。在这个框架内,我们研究了大鼠胰岛在器官芯片模型中的行为。胰岛通过沉降被捕获在基于微井的微结构的生物芯片中,并进行了 5 天的培养灌流。死活检测证实了生物芯片培养中胰岛的高存活率。微流控培养导致重要胰岛基因 Ins1、App、Insr、Gcgr、Reg3a 和 Neurod 的 mRNA 水平上调。此外,与 5 天培养后的 Petri 条件相比,生物芯片中的胰岛素和胰高血糖素分泌更高。我们还通过高、低血糖刺激证实了生物芯片中的葡萄糖诱导的胰岛素分泌,导致高/低胰岛素分泌。生物芯片中胰高血糖素样肽 1 (GLP-1) 刺激对胰岛的高反应性反映在 Gcgr、Reg3a、Neurog3、Ins1、Ins2、Stt 和 Glp-1r 的 mRNA 水平上调和胰岛素分泌增加上。获得的结果突出了生物芯片中胰岛的功能,并说明了我们的胰腺芯片模型在未来的胰腺疾病建模和抗糖尿病药物筛选中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验