Suppr超能文献

深度学习在药物固体制剂连续制造中的应用。

Deep learning for continuous manufacturing of pharmaceutical solid dosage form.

机构信息

Novartis Pharma AG, Continuous Manufacturing (CM) Unit, CH-4002 Basel, Switzerland.

Novartis Pharma AG, Continuous Manufacturing (CM) Unit, CH-4002 Basel, Switzerland.

出版信息

Eur J Pharm Biopharm. 2020 Aug;153:95-105. doi: 10.1016/j.ejpb.2020.06.002. Epub 2020 Jun 11.

Abstract

Continuous Manufacturing (CM) of pharmaceutical drug products is a new approach within the pharmaceutical industry. In the presented paper, a GMP continuous wet granulation line for production of solid dosage forms was investigated. The line was composed of the subsequent continuous unit: operations feeding - twin-screw wet-granulation - fluid-bed drying - sieving and tableting. The formulation of a commercial entity was selected for this study. Several critical process parameters were evaluated in order to probe the process and to characterize the impact on quality attributes. Seven critical process parameters have been selected after a risk analysis: API and excipient mass flows of the two feeders, liquid feed rate and rotation speed of the extruder and rotation speed, temperature and airflow of the dryer. Eight quality attributes were controlled in real time by Process Analytical Technologies (PAT): API content after blender, after dryer, in tablet press feed frame and of tablet, LOD after dryer and PSD after dryer (three PSD parameters: x10 x50 x90). The process parameter values were changed during production in order to detect the impact on the quality of the final product. The deep learning techniques have been used in order to predict the quality attribute (output) with the process parameters (input). The use of deep learning reduces the noise and simplify the data interpretation for a better process understanding. After optimization, three hidden layers neural network were selected with 6 hidden neurons. The activation function ReLU (Rectified Linear Unit) and the ADAM optimizer were used with 2500 epochs (number of learning cycle). API contents, PSD values and LOD values were estimated with an error of calibration lower than 10%. The level of error allow an adequate process monitoring by DNN and we have proven that the main critical process parameters can be identified at a higher levelof process understanding. The synergy between PAT and process data science creates a superior monitoring framework of the continuous manufacturing line and increase the knowledge of this innovative production line and the products that it makes.

摘要

药品连续制造(CM)是制药行业的一种新方法。在本文中,研究了一条用于生产固体制剂的 GMP 连续湿法造粒线。该生产线由以下连续单元组成:进料操作-双螺杆湿法造粒-流化床干燥-筛分和压片。选择了一种商业实体的配方进行这项研究。为了探究工艺并考察其对质量属性的影响,评估了几个关键工艺参数。经过风险分析,选择了七个关键工艺参数:两个进料器的 API 和赋形剂的质量流量、液体进料速度、挤出机的转速和干燥器的转速、温度和气流。通过过程分析技术(PAT)实时控制八个质量属性:混合器后、干燥器后、压片机进料架和片剂中的 API 含量、干燥器后的 LOD 和干燥器后的 PSD(三个 PSD 参数:x10、x50、x90)。为了检测对最终产品质量的影响,在生产过程中改变了工艺参数值。为了预测质量属性(输出),使用了深度学习技术。使用深度学习可以减少噪声并简化数据解释,从而更好地理解工艺。经过优化,选择了具有 6 个隐藏神经元的三个隐藏层神经网络。使用 ReLU(修正线性单元)激活函数和 ADAM 优化器,学习周期数为 2500。API 含量、PSD 值和 LOD 值的估计误差低于 10%。误差水平允许通过 DNN 进行充分的过程监测,并且我们已经证明主要的关键工艺参数可以在更高的工艺理解水平上被识别。PAT 和过程数据科学之间的协同作用为连续制造线的监控创建了一个优越的框架,并增加了对这条创新生产线和其生产产品的知识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验