Shah F, Ijaz Khan M, Hayat T, Momani Shaher, Imran Khan M
Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan.
Department of Mathematics, Riphah International University, Faisalabad Campus, Faisalabad 38000, Pakistan.
Comput Methods Programs Biomed. 2020 Nov;196:105564. doi: 10.1016/j.cmpb.2020.105564. Epub 2020 Jun 2.
This research article proposes an improved Fourier law of heat conduction (Cattaneo-Christov) in presence of heat source/sink. The heat transport characteristics are modeled for mixed convective stagnation point flow by a Riga plate. Flow is generated due to linear stretching velocity. The partial differential system is changed to ordinary differential system through implementing appropriate transformations. Series solutions are developed through semi-analytical method called as homotopy analysis method. Present research article is related to the improved Fourier law of heat conduction (Cattaneo-Christov) over a linear stretchable surface of Riga plate when fluid saturates porous space. The main outcomes of present communication are summarized as: (i) velocity of material particles decreases subject to larger inverse Darcy-number while it enhances via velocity ratio and magnetic parameters (ii) temperature distribution as well as layer thickness enhance for higher estimations of Eckert number and heat source parameter while it decays against Prandtl number (iii) skin friction coefficient decreases through higher values of inverse Darcy number and mixed convection parameter.
这篇研究文章提出了一种在存在热源/热汇情况下改进的热传导傅里叶定律(卡塔尼奥-克里斯托夫定律)。通过里加板对混合对流驻点流的热传输特性进行建模。流动是由线性拉伸速度产生的。通过实施适当的变换,将偏微分方程组转换为常微分方程组。通过一种称为同伦分析方法的半解析方法得到了级数解。当前的研究文章涉及当流体充满多孔空间时,在里加板的线性可拉伸表面上改进的热传导傅里叶定律(卡塔尼奥-克里斯托夫定律)。本通讯的主要结果总结如下:(i) 物质粒子的速度随着逆达西数增大而减小,而随着速度比和磁参数增大而增大;(ii) 对于更高的埃克特数和热源参数估计值,温度分布以及层厚度会增大,而随着普朗特数增大而减小;(iii) 表面摩擦系数随着逆达西数和混合对流参数的增大而减小。