Suppr超能文献

视网膜中 和 增强子的同时缺失改变了光感受器和双极细胞的命运特化,但与同时缺失这两个基因不同。

Simultaneous deletion of and enhancers in the retina alters photoreceptor and bipolar cell fate specification, yet differs from deleting both genes.

机构信息

Sue Anschutz Rodgers Eye Center, Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

出版信息

Development. 2020 Jul 3;147(13):dev190272. doi: 10.1242/dev.190272.

Abstract

The transcription factor OTX2 is required for photoreceptor and bipolar cell formation in the retina. It directly activates the transcription factors and through cell type-specific enhancers. PRDM1 and VSX2 work in opposition, such that PRDM1 promotes photoreceptor fate and VSX2 bipolar cell fate. To determine how OTX2+ cell fates are regulated in mice, we deleted and or their cell type-specific enhancers simultaneously using a CRISPR/Cas9 retina electroporation strategy. Double gene or enhancer targeting effectively removed PRDM1 and VSX2 protein expression. However, double enhancer targeting favored bipolar fate outcomes, whereas double gene targeting favored photoreceptor fate. Both conditions generated excess amacrine cells. Combined, these fate changes suggest that photoreceptors are a default fate outcome in OTX2+ cells and that VSX2 must be present in a narrow temporal window to drive bipolar cell formation. and also appear to redundantly restrict the competence of OTX2+ cells, preventing amacrine cell formation. By taking a combinatorial deletion approach of both coding sequences and enhancers, our work provides new insights into the complex regulatory mechanisms that control cell fate choice.

摘要

转录因子 OTX2 是视网膜中光感受器和双极细胞形成所必需的。它通过细胞类型特异性增强子直接激活转录因子 和 。PRDM1 和 VSX2 起拮抗作用,PRDM1 促进光感受器命运,而 VSX2 促进双极细胞命运。为了确定 OTX2+细胞在小鼠中的命运是如何调节的,我们使用 CRISPR/Cas9 视网膜电穿孔策略同时删除 和 或其细胞类型特异性增强子。双基因或增强子靶向有效地去除了 PRDM1 和 VSX2 蛋白表达。然而,双增强子靶向有利于双极命运结果,而双基因靶向有利于光感受器命运。这两种情况都产生了过多的无长突细胞。综合这些命运变化表明,光感受器是 OTX2+细胞的默认命运结果,并且 VSX2 必须在狭窄的时间窗口内存在以驱动双极细胞形成。 和 似乎也冗余地限制了 OTX2+细胞的能力,防止无长突细胞的形成。通过对编码序列和增强子进行组合删除的方法,我们的工作为控制细胞命运选择的复杂调控机制提供了新的见解。

相似文献

2
Prdm1 overexpression causes a photoreceptor fate-shift in nascent, but not mature, bipolar cells.
Dev Biol. 2020 Aug 15;464(2):111-123. doi: 10.1016/j.ydbio.2020.06.003. Epub 2020 Jun 17.
4
Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development.
Development. 2010 Feb;137(4):619-29. doi: 10.1242/dev.043968.
5
Functional roles of Otx2 transcription factor in postnatal mouse retinal development.
Mol Cell Biol. 2007 Dec;27(23):8318-29. doi: 10.1128/MCB.01209-07. Epub 2007 Oct 1.
6
Vsx2 in the zebrafish retina: restricted lineages through derepression.
Neural Dev. 2009 Apr 3;4:14. doi: 10.1186/1749-8104-4-14.
7
Blimp1 (Prdm1) prevents re-specification of photoreceptors into retinal bipolar cells by restricting competence.
Dev Biol. 2013 Dec 15;384(2):194-204. doi: 10.1016/j.ydbio.2013.10.006. Epub 2013 Oct 12.
10
Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina.
PLoS One. 2017 Aug 22;12(8):e0176905. doi: 10.1371/journal.pone.0176905. eCollection 2017.

引用本文的文献

1
Elevated PRDM13 Disrupts Photoreceptor Function and Survival in the Mammalian Retina.
Invest Ophthalmol Vis Sci. 2025 Aug 1;66(11):38. doi: 10.1167/iovs.66.11.38.
2
SOX2-VSX2 Co-Occupancy Shapes Retinal Neurogenesis Through Dynamic Chromatin Regulation.
bioRxiv. 2025 May 21:2025.05.19.654956. doi: 10.1101/2025.05.19.654956.
3
Microphthalmia and Disrupted Retinal Development Due to a Knock-in/Knock-Out Allele at the Locus.
Eye Brain. 2024 Nov 23;16:115-131. doi: 10.2147/EB.S480996. eCollection 2024.
4
Microphthalmia and disrupted retinal development due to a knock-in/knock-out allele at the locus.
bioRxiv. 2024 Sep 22:2024.06.08.597937. doi: 10.1101/2024.06.08.597937.
5
Rho enhancers play unexpectedly minor roles in Rhodopsin transcription and rod cell integrity.
Sci Rep. 2023 Aug 9;13(1):12899. doi: 10.1038/s41598-023-39979-6.
6
Selection signature analysis reveals performed key function in vision during sheep domestication process.
Arch Anim Breed. 2023 Feb 23;66(1):81-91. doi: 10.5194/aab-66-81-2023. eCollection 2023.
7
Application of Human Stem Cell Derived Retinal Organoids in the Exploration of the Mechanisms of Early Retinal Development.
Stem Cell Rev Rep. 2023 Aug;19(6):1755-1772. doi: 10.1007/s12015-023-10553-x. Epub 2023 Jun 3.
9
Integrative Single-Cell Transcriptomics and Epigenomics Mapping of the Fetal Retina Developmental Dynamics.
Adv Sci (Weinh). 2023 Jun;10(16):e2206623. doi: 10.1002/advs.202206623. Epub 2023 Apr 5.

本文引用的文献

2
Nucleome Dynamics during Retinal Development.
Neuron. 2019 Nov 6;104(3):512-528.e11. doi: 10.1016/j.neuron.2019.08.002. Epub 2019 Sep 4.
3
Prdm13 is required for Ebf3+ amacrine cell formation in the retina.
Dev Biol. 2018 Feb 1;434(1):149-163. doi: 10.1016/j.ydbio.2017.12.003. Epub 2017 Dec 16.
4
Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina.
PLoS One. 2017 Aug 22;12(8):e0176905. doi: 10.1371/journal.pone.0176905. eCollection 2017.
5
Gsg1, Trnp1, and Tmem215 Mark Subpopulations of Bipolar Interneurons in the Mouse Retina.
Invest Ophthalmol Vis Sci. 2017 Feb 1;58(2):1137-1150. doi: 10.1167/iovs.16-19767.
6
Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics.
Cell. 2016 Aug 25;166(5):1308-1323.e30. doi: 10.1016/j.cell.2016.07.054.
7
Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.
Nat Biotechnol. 2016 Feb;34(2):184-191. doi: 10.1038/nbt.3437. Epub 2016 Jan 18.
8
Photoreceptor cell fate specification in vertebrates.
Development. 2015 Oct 1;142(19):3263-73. doi: 10.1242/dev.127043.
10
A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina.
Dev Cell. 2014 Sep 8;30(5):513-27. doi: 10.1016/j.devcel.2014.07.018. Epub 2014 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验