Suppr超能文献

脊椎动物中光感受器细胞命运的决定

Photoreceptor cell fate specification in vertebrates.

作者信息

Brzezinski Joseph A, Reh Thomas A

机构信息

Department of Ophthalmology, University of Colorado Denver, Aurora, CO 80045, USA.

Department of Biological Structure, University of Washington, Seattle, WA 98195, USA

出版信息

Development. 2015 Oct 1;142(19):3263-73. doi: 10.1242/dev.127043.

Abstract

Photoreceptors--the light-sensitive cells in the vertebrate retina--have been extremely well-characterized with regards to their biochemistry, cell biology and physiology. They therefore provide an excellent model for exploring the factors and mechanisms that drive neural progenitors into a differentiated cell fate in the nervous system. As a result, great progress in understanding the transcriptional network that controls photoreceptor specification and differentiation has been made over the last 20 years. This progress has also enabled the production of photoreceptors from pluripotent stem cells, thereby aiding the development of regenerative medical approaches to eye disease. In this Review, we outline the signaling and transcription factors that drive vertebrate photoreceptor development and discuss how these function together in gene regulatory networks to control photoreceptor cell fate specification.

摘要

光感受器——脊椎动物视网膜中的光敏感细胞——在其生物化学、细胞生物学和生理学方面已经得到了极为充分的表征。因此,它们为探索驱动神经祖细胞在神经系统中分化为特定细胞命运的因素和机制提供了一个绝佳的模型。结果,在过去20年里,在理解控制光感受器特化和分化的转录网络方面取得了巨大进展。这一进展还使得能够从多能干细胞中产生光感受器,从而有助于开发针对眼部疾病的再生医学方法。在本综述中,我们概述了驱动脊椎动物光感受器发育的信号传导和转录因子,并讨论了它们如何在基因调控网络中共同发挥作用以控制光感受器细胞命运的特化。

相似文献

1
Photoreceptor cell fate specification in vertebrates.
Development. 2015 Oct 1;142(19):3263-73. doi: 10.1242/dev.127043.
2
Photoreceptor Fate Determination in the Vertebrate Retina.
Invest Ophthalmol Vis Sci. 2016 Apr 1;57(5):ORSFe1-6. doi: 10.1167/iovs.15-17672.
3
Have we achieved a unified model of photoreceptor cell fate specification in vertebrates?
Brain Res. 2008 Feb 4;1192:134-50. doi: 10.1016/j.brainres.2007.03.044. Epub 2007 Mar 20.
4
A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk Development.
Dev Cell. 2017 May 8;41(3):243-261.e7. doi: 10.1016/j.devcel.2017.04.002. Epub 2017 Apr 27.
5
Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network.
Development. 2014 Oct;141(19):3637-48. doi: 10.1242/dev.109678. Epub 2014 Sep 10.
6
Molecular regulation of cardiomyocyte differentiation.
Circ Res. 2015 Jan 16;116(2):341-53. doi: 10.1161/CIRCRESAHA.116.302752.
7
Differentiation of embryonic stem cells into retinal neurons.
Biochem Biophys Res Commun. 2002 Sep 20;297(2):177-84. doi: 10.1016/s0006-291x(02)02126-5.
8
The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective.
Dev Biol. 2012 Oct 1;370(1):3-23. doi: 10.1016/j.ydbio.2012.06.028. Epub 2012 Jul 10.
9
Blimp1 (Prdm1) prevents re-specification of photoreceptors into retinal bipolar cells by restricting competence.
Dev Biol. 2013 Dec 15;384(2):194-204. doi: 10.1016/j.ydbio.2013.10.006. Epub 2013 Oct 12.
10
Cell cycle and cell fate interactions in neural development.
Curr Opin Neurobiol. 2003 Feb;13(1):26-33. doi: 10.1016/s0959-4388(03)00005-9.

引用本文的文献

2
SOX2-VSX2 Co-Occupancy Shapes Retinal Neurogenesis Through Dynamic Chromatin Regulation.
bioRxiv. 2025 May 21:2025.05.19.654956. doi: 10.1101/2025.05.19.654956.
5
Differentiation versus dysfunction: thyroid hormone, deiodinases and retinal photoreceptors.
Eur Thyroid J. 2025 Mar 12;14(2). doi: 10.1530/ETJ-24-0315. Print 2025 Apr 1.
9
Molecular basis of CRX/DNA recognition and stoichiometry at the Ret4 response element.
Structure. 2024 Oct 3;32(10):1751-1759.e4. doi: 10.1016/j.str.2024.07.004. Epub 2024 Jul 30.

本文引用的文献

3
Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development.
Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):E4086-95. doi: 10.1073/pnas.1405354111. Epub 2014 Sep 16.
4
A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina.
Dev Cell. 2014 Sep 8;30(5):513-27. doi: 10.1016/j.devcel.2014.07.018. Epub 2014 Aug 21.
5
Notch signaling differentially regulates Atoh7 and Neurog2 in the distal mouse retina.
Development. 2014 Aug;141(16):3243-54. doi: 10.1242/dev.106245.
6
Intrinsically different retinal progenitor cells produce specific types of progeny.
Nat Rev Neurosci. 2014 Sep;15(9):615-27. doi: 10.1038/nrn3767. Epub 2014 Aug 6.
8
Mechanisms of blindness: animal models provide insight into distinct CRX-associated retinopathies.
Dev Dyn. 2014 Oct;243(10):1153-66. doi: 10.1002/dvdy.24151. Epub 2014 Jun 27.
9
Reconciling competence and transcriptional hierarchies with stochasticity in retinal lineages.
Curr Opin Neurobiol. 2014 Aug;27(100):68-74. doi: 10.1016/j.conb.2014.02.014. Epub 2014 Mar 15.
10
Otx2 ChIP-seq reveals unique and redundant functions in the mature mouse retina.
PLoS One. 2014 Feb 18;9(2):e89110. doi: 10.1371/journal.pone.0089110. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验