Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Mol Psychiatry. 2021 Jun;26(6):1996-2012. doi: 10.1038/s41380-020-0812-7. Epub 2020 Jun 15.
Microvascular pathology and ischemic lesions contribute substantially to neuronal dysfunction and loss that lead to Alzheimer disease (AD). To facilitate recovery, the brain stimulates neovascularization of damaged tissue via sprouting angiogenesis, a process regulated by endothelial cell (EC) sprouting and the EphB4/ephrinB2 system. Here, we show that in cultures of brain ECs, EphB4 stimulates the VE-cadherin/Rok-α angiogenic complexes known to mediate sprouting angiogenesis. Importantly, brain EC cultures expressing PS1 FAD mutants decrease the EphB4-stimulated γ-secretase cleavage of ephrinB2 and reduce production of the angiogenic peptide ephrinB2/CTF2, the VE-cadherin angiogenic complexes and EC sprouting and tube formation. These data suggest that FAD mutants may attenuate ischemia-induced brain angiogenesis. Supporting this hypothesis, ischemia-induced VE-cadherin angiogenic complexes, levels of neoangiogenesis marker Endoglin, vascular density, and cerebral blood flow recovery, are all decreased in brains of mouse models expressing PS1 FAD mutants. Ischemia-induced brain neuronal death and cognitive deficits also increase in these mice. Furthermore, a small peptide comprising the C-terminal sequence of peptide ephrinB2/CTF2 rescues angiogenic functions of brain ECs expressing PS1 FAD mutants. Together, our data show that PS1 FAD mutations impede the EphB4/ephrinB2-mediated angiogenic functions of ECs and impair brain neovascularization, neuronal survival and cognitive recovery following ischemia. Furthermore, our data reveal a novel brain angiogenic mechanism targeted by PS1 FAD mutants and a potential therapeutic target for ischemia-induced neurodegeneration. Importantly, FAD mutant effects occur in absence of neuropathological hallmarks of AD, supporting that such hallmarks may form downstream of mutant effects on neoangiogenesis and neuronal survival.
微血管病变和缺血性损伤在很大程度上导致神经元功能障碍和丧失,进而导致阿尔茨海默病(AD)。为了促进恢复,大脑通过血管生成(sprouting angiogenesis)刺激受损组织的新生血管形成,这一过程受内皮细胞(EC)发芽和 EphB4/ephrinB2 系统的调节。在这里,我们表明,在脑 EC 培养物中,EphB4 刺激已知介导血管生成发芽的 VE-cadherin/Rok-α 血管生成复合物。重要的是,表达 PS1 FAD 突变体的脑 EC 培养物减少 EphB4 刺激的 γ-分泌酶切割 ephrinB2,并降低血管生成肽 ephrinB2/CTF2、VE-cadherin 血管生成复合物以及 EC 发芽和管状结构的产生。这些数据表明,FAD 突变体可能会减弱缺血诱导的脑血管生成。支持这一假说,在表达 PS1 FAD 突变体的小鼠模型中,缺血诱导的 VE-cadherin 血管生成复合物、新生血管标志物 Endoglin 的水平、血管密度和脑血流恢复均降低。这些小鼠的缺血诱导的脑神经元死亡和认知缺陷也增加。此外,由肽 ephrinB2/CTF2 的 C 末端序列组成的小肽可挽救表达 PS1 FAD 突变体的脑 EC 的血管生成功能。总之,我们的数据表明,PS1 FAD 突变会阻碍 EphB4/ephrinB2 介导的 EC 的血管生成功能,并损害缺血后的脑新生血管形成、神经元存活和认知恢复。此外,我们的数据揭示了一种新的脑血管生成机制,该机制被 PS1 FAD 突变体靶向,并且是缺血诱导的神经退行性变的潜在治疗靶点。重要的是,在没有 AD 的神经病理学特征的情况下,FAD 突变体的作用支持这样的特征可能形成于突变对新生血管形成和神经元存活的影响之后。