Liu Chenxiu, Tang Chen, Xu Min, Hao Fugui, Lei Zhenkun
Appl Opt. 2020 Jun 10;59(17):5300-5308. doi: 10.1364/AO.391501.
Extracting skeletons from fringe patterns is the key to the fringe skeleton method, which is used to extract phase terms in electronic speckle pattern interferometry (ESPI). Because of massive inherent speckle noise, extracting skeletons from poor, broken ESPI fringe patterns is challenging. In this paper, we propose a method based on a modified M-net convolutional neural network for skeleton extraction from poor, broken ESPI fringe patterns. In our method, we pose the problem as a segmentation task. The M-net performs excellent segmentation, and we modify its loss function to suit our task. The broken ESPI fringe patterns and corresponding complete skeleton images are used to train the modified M-net. The trained network can extract and inpaint the skeletons simultaneously. We evaluate the performance of the network on two groups of computer-simulated ESPI fringe patterns and two groups of experimentally obtained ESPI fringe patterns. Two related recent methods, the gradient vector fields based on variational image decomposition and the U-net based method, are compared with our method. The results demonstrate that our method can obtain accurate, complete, and smooth skeletons in all cases, even where fringes are broken. It outperforms the two compared methods quantitatively and qualitatively.
从条纹图案中提取骨架是条纹骨架法的关键,该方法用于在电子散斑图案干涉测量(ESPI)中提取相位项。由于存在大量固有的散斑噪声,从质量差、不连续的ESPI条纹图案中提取骨架具有挑战性。在本文中,我们提出了一种基于改进的M-net卷积神经网络的方法,用于从质量差、不连续的ESPI条纹图案中提取骨架。在我们的方法中,我们将该问题视为一个分割任务。M-net在分割方面表现出色,我们修改其损失函数以适应我们的任务。使用不连续的ESPI条纹图案和相应的完整骨架图像来训练改进后的M-net。训练后的网络可以同时提取和修复骨架。我们在两组计算机模拟的ESPI条纹图案和两组实验获得的ESPI条纹图案上评估了该网络的性能。将两种相关的近期方法,即基于变分图像分解的梯度向量场方法和基于U-net的方法,与我们的方法进行了比较。结果表明,我们的方法在所有情况下都能获得准确、完整且平滑的骨架,即使条纹是不连续的。在定量和定性方面,它都优于两种比较方法。